mersenneforum.org

mersenneforum.org (https://www.mersenneforum.org/index.php)
-   Twin Prime Search (https://www.mersenneforum.org/forumdisplay.php?f=65)
-   -   List of most small twins of form k*2^n+/-1 (https://www.mersenneforum.org/showthread.php?t=8479)

gd_barnes 2007-06-23 22:11

List of most small twins of form k*2^n+/-1
 
1 Attachment(s)
To whom may be interested,

I went through an excercise to find an easy way to get most of the primes of the form k * 2 ^ n +/- 1 with small values of k. What I did was I extracted all of the k's and n's from the RPS site, the Primesearch site, and the Proth search site into Excel spreadsheets. I then used Excel formulas to match up primes for the -1 sites (RPS and Primesearch) to the +1 site (Proth). The largest value of k that I could use was 599 because that is the highest that the Proth search site goes to.

Attached is a Notepad file that shows what I came up with. The first part is sorted by n. The second part by k.

Although the largest twins that I found don't come close to the top 10 or 20 twins, I think it's good to have comprehensive lists like this as 'building blocks' for future searches.

The largest twins that I found from the effort are:
1. 459 * 2 ^ 8529 +/- 1
2. 291 * 2 ^ 1553 +/- 1
3. 177 * 2 ^ 1032 +/- 1

Not too bad considering I could only match up to k=599. Obviously this list is constrainted by the lower limits of how far each k has been searched for BOTH Riesel primes and Proth primes.

If anyone knows of a more comprehensive list of Proth primes (i.e. of the form k * 2^n + 1) where k > 600 like we have at RPS for Rielsel primes, I'll extend this effort to include more k's.



Gary

Citrix 2007-06-24 05:56

Here are twins from k=1 to 10145 (used this limit as LLR is faster for these k's) and corresponding twin n's upto n=250. Would like to extend these further, anyone want to help. I think k=1-300 have been searched enough.

[code]
3 1
3 2
3 6
3 18
9 1
9 3
9 7
9 43
9 63
9 211
15 1
15 2
15 4
15 10
21 1
21 7
27 2
27 4
33 6
33 22
39 3
45 2
45 9
45 14
45 29
45 189
51 1
51 9
57 2
57 8
57 10
63 14
69 1
69 19
75 1
75 3
75 6
75 43
81 5
81 21
81 27
87 2
87 8
93 4
93 10
99 1
99 5
99 11
99 65
105 2
105 5
105 8
105 155
117 4
117 6
117 16
129 3
129 5
129 59
135 1
135 10
135 238
141 1
141 7
141 61
147 44
147 60
165 2
165 3
165 5
165 12
165 39
165 84
177 12
177 48
195 4
195 8
195 14
201 3
201 9
207 2
213 36
213 80
231 1
231 7
243 12
243 18
243 24
255 2
255 41
261 1
261 3
261 9
267 4
267 34
267 40
273 2
273 10
285 1
297 14
309 1
309 143
315 22
315 72
321 1
321 5
327 4
333 54
339 3
339 11
345 4
345 15
345 30
345 40
345 150
357 2
357 10
357 14
363 2
369 13
375 3
375 14
375 26
375 33
381 17
381 21
387 28
387 88
399 11
405 1
405 2
405 46
405 80
411 1
411 19
417 2
417 8
417 62
423 8
429 1
429 9
429 37
435 4
441 1
441 3
441 13
441 181
447 2
447 20
453 48
459 3
459 9
465 6
465 9
471 3
483 2
483 18
483 22
489 5
495 16
495 33
507 2
507 26
513 6
513 12
519 11
519 55
525 1
525 6
525 8
525 26
525 190
531 1
537 6
537 102
549 11
555 9
555 27
561 7
567 2
585 2
585 32
585 57
591 5
597 70
603 10
603 76
609 19
615 1
615 14
621 3
627 6
633 32
639 1
639 13
645 1
645 5
645 7
651 1
657 58
663 24
669 11
675 5
675 9
675 15
675 26
681 31
687 34
699 5
699 125
705 3
705 6
711 17
717 12
723 6
723 16
735 3
735 20
735 21
741 1
741 7
741 11
741 35
747 6
759 17
765 4
765 10
765 12
765 18
765 22
765 25
765 168
777 10
795 3
813 2
813 4
813 58
819 3
819 63
825 2
831 9
843 2
843 20
849 1
849 3
849 45
849 91
855 4
855 10
855 11
861 1
861 25
867 2
867 8
879 17
885 2
885 14
885 17
891 3
897 28
903 4
903 6
915 22
915 25
915 55
915 70
921 15
927 50
933 40
939 1
945 3
945 8
945 12
951 13
957 22
963 2
975 1
975 24
975 37
981 5
993 4
993 8
993 14
999 1
999 13
1005 2
1011 3
1017 12
1023 2
1023 242
1029 3
1029 7
1035 8
1035 14
1041 1
1053 14
1065 1
1065 2
1065 28
1065 56
1071 1
1071 7
1071 25
1089 5
1089 15
1089 131
1095 9
1095 42
1101 37
1107 50
1119 1
1119 13
1125 3
1125 51
1125 58
1125 63
1125 123
1131 15
1137 2
1143 4
1155 1
1155 3
1155 18
1155 31
1179 3
1179 11
1179 23
1179 51
1179 141
1185 25
1191 1
1191 61
1197 2
1197 10
1197 16
1197 52
1197 70
1197 206
1203 104
1209 9
1215 3
1221 3
1233 2
1233 16
1245 5
1251 3
1257 6
1263 6
1269 37
1275 1
1275 2
1275 31
1281 17
1281 23
1287 8
1299 11
1305 5
1305 32
1323 106
1329 1
1329 65
1335 15
1347 12
1353 4
1365 1
1365 4
1365 12
1365 39
1383 176
1389 21
1395 1
1395 3
1395 7
1395 21
1395 43
1401 1
1401 17
1401 37
1407 12
1413 2
1419 3
1419 15
1419 147
1431 23
1437 6
1443 8
1455 16
1455 85
1455 133
1467 2
1467 6
1467 14
1467 92
1479 3
1479 19
1485 1
1485 17
1485 58
1491 5
1491 17
1491 29
1491 47
1497 122
1509 3
1509 21
1509 125
1515 5
1515 105
1527 16
1527 20
1533 2
1539 7
1545 10
1545 34
1545 82
1551 9
1551 33
1575 2
1575 6
1575 13
1575 16
1575 20
1581 5
1587 76
1593 26
1599 9
1605 12
1611 19
1617 10
1617 20
1623 22
1623 52
1623 64
1629 1
1629 7
1629 13
1629 87
1635 11
1641 11
1659 5
1665 1
1665 2
1665 5
1665 25
1677 14
1695 1
1695 2
1695 46
1707 2
1713 4
1719 33
1725 23
1725 26
1731 1
1731 39
1737 2
1737 4
1743 14
1743 28
1755 204
1761 17
1767 50
1779 1
1785 30
1791 1
1791 7
1797 4
1803 2
1809 15
1815 16
1827 2
1827 6
1833 2
1833 16
1863 20
1863 32
1869 7
1869 17
1869 23
1869 47
1875 17
1881 15
1881 169
1887 2
1887 12
1887 62
1893 8
1899 19
1911 1
1911 3
1911 5
1911 41
1923 22
1935 8
1935 12
1935 188
1941 49
1941 175
1947 4
1953 4
1959 1
1959 7
1959 49
1965 1
1965 10
1983 4
1983 124
1989 5
1995 5
1995 6
1995 14
1995 16
1995 21
1995 26
1995 39
2001 1
2001 19
2001 29
2001 53
2013 6
2025 1
2037 6
2055 2
2055 20
2061 9
2061 35
2067 4
2067 12
2067 22
2073 2
2079 1
2079 3
2079 31
2079 81
2079 103
2091 7
2097 2
2097 14
2097 36
2103 6
2109 1
2115 1
2115 14
2115 173
2121 1
2121 163
2127 4
2127 22
2127 50
2133 4
2133 58
2139 5
2151 3
2151 15
2157 2
2157 4
2157 124
2163 16
2163 20
2163 60
2169 1
2175 6
2175 43
2175 111
2181 29
2181 33
2181 131
2187 6
2187 30
2187 36
2205 2
2205 4
2205 7
2205 19
2205 40
2205 110
2211 1
2211 7
2211 19
2211 49
2217 12
2229 5
2241 1
2241 5
2241 13
2253 2
2253 20
2259 1
2265 3
2265 81
2271 5
2271 9
2271 45
2277 10
2277 178
2283 4
2289 3
2289 9
2289 11
2295 14
2295 47
2313 14
2319 1
2319 7
2319 61
2325 1
2325 4
2331 21
2343 30
2349 5
2355 2
2355 12
2355 32
2361 1
2361 25
2373 36
2385 3
2385 6
2385 22
2397 6
2403 4
2403 52
2409 11
2415 9
2415 10
2415 54
2433 32
2445 15
2457 46
2457 74
2463 16
2469 3
2469 7
2469 67
2487 6
2487 12
2487 18
2493 184
2499 3
2499 17
2499 21
2505 1
2511 1
2517 2
2517 62
2523 2
2523 20
2529 3
2535 2
2535 53
2547 10
2547 14
2553 4
2565 126
2571 21
2571 231
2577 4
2577 76
2583 2
2583 6
2595 4
2595 7
2595 46
2601 3
2601 5
2607 2
2607 6
2607 20
2613 24
2625 2
2625 21
2625 31
2631 7
2649 3
2655 7
2655 49
2661 19
2673 8
2673 116
2679 49
2685 9
2685 54
2691 5
2691 9
2697 10
2697 12
2697 28
2697 78
2703 14
2703 16
2709 1
2709 19
2715 2
2715 13
2721 1
2721 105
2733 48
2739 1
2739 9
2739 13
2745 7
2751 1
2757 40
2769 5
2769 33
2775 5
2781 7
2787 14
2793 2
2805 15
2805 27
2811 15
2817 6
2829 1
2829 5
2835 63
2847 172
2859 17
2865 30
2871 1
2889 7
2895 5
2895 8
2895 11
2895 51
2913 26
2919 35
2925 1
2925 2
2925 13
2925 37
2925 67
2937 44
2943 20
2955 5
2955 7
2961 3
2961 7
2961 17
2967 10
2967 16
2979 3
2985 2
2985 14
2985 66
2997 10
2997 50
3003 6
3015 16
3027 2
3027 18
3039 11
3045 1
3045 22
3057 18
3057 52
3063 2
3063 44
3069 11
3075 4
3081 7
3081 73
3087 4
3087 6
3087 112
3093 10
3093 38
3099 1
3105 8
3105 134
3111 27
3111 41
3117 6
3117 132
3123 34
3129 3
3129 15
3135 1
3135 2
3135 44
3135 74
3153 2
3153 14
3153 30
3165 5
3165 10
3165 20
3183 12
3189 9
3195 17
3213 16
3213 56
3219 7
3219 29
3225 1
3225 3
3225 13
3231 3
3231 5
3231 15
3243 12
3243 16
3249 5
3249 29
3249 41
3255 11
3255 32
3273 24
3273 60
3285 1
3285 7
3285 57
3303 118
3315 21
3315 27
3321 89
3327 4
3339 3
3339 13
3339 37
3339 93
3345 1
3351 1
3351 9
3363 8
3369 3
3369 9
3369 15
3375 10
3375 26
3381 1
3381 5
3399 11
3399 15
3399 23
3399 33
3399 57
3405 3
3405 5
3405 8
3405 27
3405 227
3417 16
3423 2
3429 61
3435 1
3435 3
3435 33
3441 3
3441 15
3447 20
3453 42
3465 4
3465 5
3465 10
3465 14
3465 24
3465 35
3465 80
3471 7
3477 4
3477 12
3477 24
3477 52
3483 2
3489 35
3495 6
3495 28
3507 10
3507 46
3513 4
3513 70
3519 13
3525 9
3525 44
3537 10
3549 19
3555 5
3555 16
3555 137
3579 15
3591 7
3591 63
3591 77
3597 2
3603 34
3615 212
3627 14
3633 14
3633 54
3639 41
3651 3
3651 111
3657 2
3663 22
3663 78
3669 25
3675 1
3675 3
3675 12
3675 29
3675 36
3681 79
3693 20
3699 23
3705 15
3717 2
3717 4
3717 16
3717 164
3729 1
3735 3
3741 153
3747 94
3765 8
3765 10
3765 35
3771 7
3777 20
3783 36
3789 9
3795 1
3795 5
3795 52
3801 5
3813 30
3819 5
3825 5
3825 11
3837 8
3849 7
3855 3
3855 33
3861 5
3867 38
3879 1
3879 11
3879 29
3879 35
3885 3
3885 6
3885 7
3885 8
3885 20
3909 9
3915 3
3915 123
3915 147
3927 10
3933 2
3933 4
3933 10
3933 14
3939 1
3939 3
3957 4
3957 120
3963 10
3963 38
3969 11
3975 1
3975 4
3981 3
3981 13
3981 61
3993 2
3993 12
4005 1
4005 8
4011 11
4011 27
4011 51
4017 2
4017 16
4029 23
4029 29
4035 2
4035 5
4035 8
4035 23
4035 60
4035 62
4047 2
4059 7
4059 25
4059 31
4059 241
4065 12
4077 12
4089 35
4089 83
4095 4
4095 18
4095 125
4107 100
4113 2
4119 9
4125 27
4125 87
4131 49
4137 82
4143 140
4155 56
4155 174
4161 3
4161 75
4167 6
4173 2
4173 10
4173 32
4185 14
4191 7
4209 9
4215 1
4215 106
4221 3
4221 11
4221 35
4239 5
4245 2
4245 198
4257 2
4257 4
4263 4
4269 1
4275 10
4275 39
4281 5
4287 180
4299 1
4299 125
4305 4
4305 16
4311 11
4311 77
4323 2
4323 6
4323 8
4323 12
4323 36
4329 15
4347 2
4347 6
4347 8
4353 10
4359 81
4365 51
4383 14
4389 17
4395 2
4407 20
4419 1
4431 1
4431 3
4437 2
4449 3
4449 29
4449 39
4449 53
4455 6
4461 13
4467 4
4467 124
4467 128
4473 26
4473 76
4473 92
4485 1
4485 28
4497 2
4497 68
4497 152
4509 7
4515 2
4515 5
4515 19
4521 1
4521 7
4521 29
4527 24
4527 58
4533 2
4533 8
4545 13
4557 6
4563 2
4569 27
4575 8
4575 9
4575 104
4599 3
4599 19
4605 4
4605 10
4611 15
4623 6
4635 2
4635 4
4641 1
4647 8
4671 1
4677 10
4695 7
4695 10
4713 132
4719 1
4719 5
4725 35
4731 1
4731 83
4743 6
4749 3
4749 5
4749 11
4749 35
4749 41
4755 4
4761 11
4761 17
4767 42
4773 4
4773 64
4785 2
4785 47
4791 3
4791 15
4803 2
4803 10
4803 32
4809 5
4815 1
4815 5
4821 3
4821 13
4821 49
4827 6
4833 6
4839 1
4839 3
4845 2
4845 7
4851 9
4857 2
4857 4
4857 8
4857 22
4857 32
4857 58
4863 22
4869 141
4887 4
4893 6
4899 7
4905 3
4905 19
4929 1
4929 79
4935 7
4935 12
4935 14
4935 16
4935 17
4947 4
4947 28
4953 14
4965 1
4965 37
4977 4
4977 8
4995 6
5001 5
5001 11
5013 4
5013 10
5019 1
5019 3
5019 19
5019 45
5025 20
5025 125
5031 19
5037 2
5043 8
5043 14
5049 7
5055 10
5055 40
5055 68
5061 23
5073 12
5079 5
5091 7
5097 4
5103 4
5115 9
5115 30
5115 58
5127 2
5127 6
5127 12
5133 6
5139 5
5139 17
5145 39
5145 48
5151 1
5151 41
5163 6
5163 116
5187 2
5187 20
5193 2
5193 44
5205 47
5229 1
5229 77
5241 15
5247 6
5253 2
5259 3
5259 69
5259 153
5265 1
5265 2
5271 41
5277 10
5283 168
5295 14
5295 50
5301 3
5325 4
5331 11
5343 6
5343 28
5343 36
5349 5
5355 1
5355 3
5373 2
5379 9
5385 9
5385 39
5385 40
5385 57
5397 2
5397 4
5397 14
5403 2
5403 16
5415 3
5415 6
5433 4
5433 14
5439 5
5445 1
5445 4
5445 8
5451 3
5451 7
5451 27
5451 33
5469 1
5469 13
5475 13
5475 25
5475 103
5481 5
5481 11
5481 185
5493 34
5499 11
5505 5
5505 57
5505 80
5511 3
5511 21
5523 2
5523 6
5523 32
5529 1
5529 205
5535 1
5535 3
5535 7
5535 48
5535 78
5541 9
5547 6
5553 16
5559 1
5559 5
5559 11
5565 7
5565 13
5565 14
5565 119
5571 29
5577 6
5583 8
5589 99
5595 4
5595 30
5607 14
5607 24
5625 5
5625 69
5643 2
5643 38
5649 9
5649 23
5655 2
5655 19
5655 44
5661 51
5679 9
5679 13
5685 2
5685 8
5697 4
5697 76
5709 15
5715 2
5715 14
5715 149
5727 14
5727 26
5733 16
5745 1
5745 10
5757 2
5757 12
5769 5
5775 1
5775 4
5775 7
5775 19
5781 7
5787 12
5787 48
5793 84
5799 5
5805 3
5805 18
5805 84
5823 2
5835 3
5835 9
5835 27
5835 45
5835 129
5847 22
5859 1
5859 27
5859 31
5859 81
5859 215
5865 7
5865 26
5865 50
5871 25
5889 1
5901 5
5907 2
5919 3
5925 15
5925 35
5943 4
5943 10
5949 5
5949 11
5955 7
5955 16
5961 117
5967 8
5985 1
6015 3
6015 13
6015 36
6021 1
6021 25
6027 2
6027 12
6027 42
6033 20
6033 32
6033 38
6039 3
6039 39
6045 2
6045 8
6051 3
6057 22
6063 20
6063 40
6063 130
6069 9
6081 1
6081 3
6087 6
6093 2
6093 12
6099 19
6105 2
6105 10
6105 16
6105 17
6105 46
6105 80
6117 56
6123 24
6129 3
6129 135
6147 50
6159 7
6165 4
6165 34
6171 3
6177 20
6183 4
6183 82
6189 1
6195 20
6195 26
6195 57
6195 92
6201 19
6207 54
6225 7
6231 7
6231 79
6237 46
6249 3
6249 13
6249 37
6249 63
6273 8
6273 10
6273 16
6279 5
6279 33
6285 5
6285 56
6297 14
6321 41
6327 2
6327 80
6333 24
6333 54
6345 20
6351 99
6369 5
6375 4
6375 13
6375 18
6381 9
6393 18
6405 3
6411 1
6417 34
6435 3
6435 36
6441 17
6459 1
6465 3
6465 14
6471 3
6477 22
6483 2
6489 9
6501 1
6501 45
6501 175
6531 5
6531 13
6549 5
6549 9
6549 15
6549 59
6555 11
6555 21
6555 162
6555 221
6561 33
6561 43
6567 116
6573 12
6573 22
6579 7
6585 4
6585 52
6591 5
6609 1
6615 217
6627 4
6627 12
6627 18
6639 95
6645 4
6645 6
6645 9
6645 37
6669 1
6669 21
6675 2
6675 15
6675 51
6687 6
6693 80
6699 1
6699 3
6705 5
6705 7
6705 10
6705 25
6711 19
6717 6
6717 12
6723 2
6729 61
6735 34
6765 2
6765 6
6765 30
6771 19
6777 2
6783 6
6783 12
6783 60
6795 19
6795 45
6807 6
6807 8
6825 4
6825 30
6825 42
6825 60
6831 23
6831 29
6837 10
6843 44
6855 1
6861 1
6879 1
6885 2
6891 5
6897 10
6897 108
6903 142
6915 1
6915 31
6915 37
6927 14
6927 56
6939 1
6945 4
6945 7
6951 1
6951 9
6957 20
6963 6
6963 12
6963 16
6969 5
6975 6
6975 11
6975 12
6975 59
6975 74
6981 27
6981 205
6987 28
6999 1
6999 41
7005 1
7005 3
7023 24
7023 64
7029 23
7029 35
7029 71
7035 8
7035 48
7035 122
7041 1
7041 7
7059 9
7059 11
7059 23
7065 4
7065 6
7065 39
7065 66
7071 25
7077 2
7083 4
7083 28
7089 3
7089 7
7095 17
7095 30
7101 3
7101 5
7107 6
7119 7
7125 1
7125 8
7125 20
7137 2
7137 6
7143 2
7143 6
7143 24
7143 30
7149 3
7155 2
7155 5
7155 8
7155 13
7161 1
7161 15
7161 57
7167 8
7179 9
7179 11
7179 15
7179 39
7179 45
7185 8
7191 3
7191 9
7197 4
7203 10
7203 28
7203 32
7215 34
7221 185
7245 5
7245 12
7245 14
7245 17
7245 69
7245 102
7245 107
7257 10
7257 88
7263 8
7269 3
7275 1
7281 1
7281 17
7281 19
7293 4
7299 3
7305 3
7305 119
7305 128
7311 11
7317 12
7329 5
7329 61
7335 7
7335 11
7335 35
7341 15
7341 135
7347 2
7347 6
7347 8
7347 108
7353 8
7359 9
7365 4
7377 94
7383 10
7383 172
7389 11
7395 20
7401 3
7401 25
7419 7
7425 4
7443 4
7449 17
7455 60
7455 74
7473 6
7479 29
7485 12
7485 40
7485 57
7491 5
7503 2
7503 4
7515 17
7515 33
7521 3
7533 8
7533 52
7539 35
7539 75
7545 19
7545 31
7545 103
7551 37
7569 1
7569 159
7575 11
7575 25
7581 3
7593 16
7611 3
7617 2
7623 2
7623 30
7635 1
7635 6
7647 6
7653 6
7665 1
7665 10
7665 40
7671 5
7671 7
7671 35
7677 6
7695 3
7695 9
7695 93
7713 2
7719 33
7725 111
7731 5
7737 96
7737 166
7749 7
7749 9
7755 10
7755 17
7755 47
7767 26
7791 1
7797 10
7809 21
7809 29
7809 47
7821 1
7821 7
7845 6
7845 30
7851 5
7851 99
7857 8
7863 6
7863 22
7863 60
7869 1
7875 11
7881 103
7887 114
7917 6
7923 14
7929 61
7935 32
7947 222
7953 4
7977 12
7989 21
7995 5
7995 8
7995 47
8001 5
8001 15
8007 2
8007 4
8013 10
8019 3
8025 5
8031 1
8037 16
8037 76
8055 43
8061 77
8067 14
8067 26
8079 53
8085 44
8085 61
8091 25
8097 6
8097 46
8097 52
8103 2
8103 12
8109 11
8109 21
8115 1
8115 3
8115 10
8115 189
8121 53
8121 139
8127 18
8127 26
8133 2
8133 14
8133 34
8145 45
8157 24
8163 74
8175 8
8175 13
8181 1
8181 3
8193 6
8199 7
8205 7
8205 16
8205 26
8211 7
8211 35
8223 18
8223 28
8235 2
8235 5
8235 12
8235 27
8241 3
8241 21
8241 31
8253 4
8265 97
8265 199
8283 4
8289 5
8289 7
8289 13
8289 55
8295 2
8295 3
8319 21
8325 1
8325 10
8325 12
8325 70
8337 2
8337 192
8355 30
8367 6
8373 8
8373 10
8385 28
8397 2
8397 14
8409 3
8415 1
8415 11
8415 13
8415 23
8415 29
8415 38
8421 13
8421 15
8421 107
8427 52
8433 6
8445 5
8445 23
8451 1
8457 2
8457 56
8469 17
8475 4
8493 6
8499 5
8499 11
8499 25
8505 7
8505 51
8511 5
8511 49
8511 185
8517 6
8523 12
8535 3
8535 6
8535 39
8541 5
8541 47
8547 4
8547 8
8553 2
8559 43
8565 2
8565 15
8565 135
8571 45
8583 34
8589 3
8589 7
8595 1
8613 6
8619 37
8625 2
8625 44
8631 7
8631 9
8631 19
8649 3
8649 21
8655 6
8673 14
8673 18
8673 62
8679 83
8685 22
8691 11
8691 27
8697 6
8709 1
8709 5
8715 5
8715 6
8715 30
8721 127
8727 12
8727 60
8739 125
8745 1
8745 9
8745 12
8757 74
8763 2
8775 3
8775 51
8781 11
8787 16
8793 32
8799 1
8805 23
8811 3
8823 26
8829 1
8835 10
8841 1
8841 5
8841 9
8841 19
8841 29
8841 99
8847 14
8853 16
8859 5
8859 69
8865 3
8865 8
8877 2
8877 116
8883 2
8883 68
8895 1
8901 5
8907 6
8913 4
8919 1
8919 7
8919 31
8925 6
8949 5
8955 1
8955 21
8955 24
8961 1
8961 5
8973 4
8973 10
8979 1
8985 3
9003 2
9009 17
9021 1
9021 3
9021 9
9021 37
9027 2
9033 20
9033 50
9039 199
9051 13
9051 217
9057 20
9063 4
9063 6
9063 166
9069 23
9081 3
9087 16
9087 22
9087 34
9087 62
9093 16
9099 5
9105 4
9105 6
9105 13
9105 19
9105 60
9117 2
9117 8
9117 20
9123 4
9135 18
9135 24
9135 30
9141 25
9141 67
9159 15
9159 21
9165 13
9165 16
9189 51
9195 2
9195 12
9201 3
9207 82
9219 13
9225 2
9225 5
9225 11
9225 17
9225 101
9225 214
9231 3
9231 43
9237 24
9243 8
9249 15
9249 51
9255 2
9255 56
9261 1
9273 96
9279 9
9285 9
9285 77
9285 78
9291 15
9297 10
9297 20
9303 24
9327 2
9327 6
9345 3
9345 4
9345 55
9345 93
9357 4
9375 16
9381 5
9387 2
9387 20
9393 2
9405 27
9405 95
9411 17
9417 6
9423 2
9423 4
9435 4
9435 10
9435 76
9441 15
9453 2
9459 1
9459 37
9465 8
9465 35
9483 12
9483 34
9483 36
9489 5
9489 39
9495 78
9519 65
9525 6
9549 17
9555 5
9555 30
9555 91
9567 4
9585 6
9585 21
9591 1
9591 23
9591 47
9603 8
9609 3
9609 13
9615 2
9615 14
9615 17
9621 5
9621 17
9645 5
9651 67
9663 2
9681 11
9687 2
9687 10
9693 28
9693 42
9699 15
9699 99
9705 36
9711 1
9711 3
9717 10
9717 16
9723 22
9735 1
9741 5
9741 29
9747 48
9753 36
9753 196
9759 23
9765 21
9771 1
9789 9
9801 7
9801 35
9807 2
9807 24
9825 5
9825 6
9837 6
9843 2
9843 20
9849 1
9849 11
9849 121
9861 3
9861 33
9867 108
9873 32
9885 7
9885 32
9897 14
9903 6
9909 5
9909 65
9915 11
9915 245
9921 1
9945 1
9945 3
9945 16
9951 75
9957 2
9975 8
9975 11
9975 17
9975 61
9981 1
9987 4
9987 6
9987 18
9999 81
10005 4
10011 1
10011 61
10017 40
10017 112
10017 184
10023 32
10029 3
10035 9
10041 5
10047 4
10047 40
10059 3
10059 7
10059 9
10059 39
10065 199
10083 24
10083 104
10101 15
10107 2
10107 38
10125 92
10131 3
10131 13
10131 39
10137 70
10143 4

[/code]

gd_barnes 2007-06-24 07:38

Thanks, Citrix, for adding to my list. I think it's great to have a comprehensive list of all primes and twin primes of certain forms up to certain limits of k and n before going after the really big primes.

For my list, I unofficially tested k=1 to 600 (i.e. ran no programs) up to the lower limit of where primes were tested to on the Riesel and Proth search sites by matching up the k's and n's. This has usually been up to at least n=200K because both Riesel and Proth primes have been mostly tested at least that high for all k's < 600. So I think doing any further twin testing for k < 600 would not be worthwile because even trying to find one twin above n=200K would take months and possibly years without a large coordinated effort.

I have 3 decent-speed machines working on other prime efforts right now that I want to continue on for several weeks yet and a very slow older machine that I use for sieving while the others are prime testing. I think I'll do 3 things here to continue this process:
1. Specify exactly how far each of the k's on my list have been tested. Yours are specifically tested to n=250, but I can't say for sure how high of an n each k is tested on mine without looking more closely at the various sites.
2. Add your primes to my list.
3. Once my slow-speed machine (333 mhz) is done with it's current sieve in about 2 days, I'll use it to test your k's to higher n's for twins. As slow as it is, I'll either limit the n's to 1000 or limit the k's to 2000 and allow the n's to go up to 10000 or so. Obviously these are very rough estimates only.

Also to be determined for my list...what gaps exist in the primes for the k's listed on the RPS, i.e. 15k, site, the Primesearch site, and the Proth search site. It's not immediately obvious where gaps exists. One gap that I know of for sure on Riesel primes is for k=289 from n=300K to n=501991. I checked around on another area in this forum and no one could say for sure that the range had been tested so I reserved it. I currently have my highest-speed dual-core machine working on the entire range. Any other Riesel prime that I find in that range will also be tested for a twin or checked for the same n on the Proth search site.


Gary

gd_barnes 2007-06-26 08:19

Combined list with testing limit included
 
1 Attachment(s)
Citrix,

Actually, k=1 to 600 have been searched enough since that's how far the Proth search site goes up to and so is how far up I matched the site with ours.

I wasn't able to do any more testing yet but I combined your list with mine and added the value of n that each k has been tested through. Of course all of yours are 250. I also added odd k's divisbile by 3 (i.e. k=3 mod 6) up to k < 1000 where no twins were found and showed (none) by them. People might like to test those with a little more vigor in the future. I suspect there will be plenty of k's that have no twin primes found. It will be interesting to see if the lowest value of k=3 mod 6 where there are no twins really turns out to be k=111 like it is now. It has technically been tested to n=350K.

I should be able to extend the search for k > 600 a little on Tuesday sometime. Thanks for your help so far. This might turn out to be an interesting effort and could give us a good base to work from if we wish to find somewhat large triplets, quadruplets, 5-tuples, etc. in the future.

My changes are attached.


Gary

Citrix 2007-06-28 04:19

Twins upto n=500. These twins are really rare..

165 264
165 282
555 282
573 344
615 391
669 333
969 269
1023 380
1215 255
1701 387
1743 418
1899 291
1995 492
2085 455
2373 294
2475 260
2565 468
2667 288
2805 259
3321 371
3381 281
3921 443
4101 443
4323 458
5049 361
5139 251
5253 338
5415 435
5547 470
6405 299
7173 294
7503 488
7605 314
7785 355
7791 331
8613 458
8787 472
9063 456
9129 359
9345 445
9369 365
9543 310
9609 297
9789 263
9951 257
9993 308
10071 327

gd_barnes 2007-06-28 04:35

Complete twin list k=1-100K and n=1-5K
 
1 Attachment(s)
Attached is a complete list of all twin primes for k = 1 to 100K and n = 1 to 5K for the form k * 2^n +/- 1. It also includes the twin 459 * 2 ^ 8529 +/- 1 from my earlier effort to match up all known Riesel and Proth primes. There are a total of 17717 twins in the list.

I hope someone finds this useful in searches for more 'exotic' primes such as triplets, quads, 5-tuples, etc.

Eventually I want to expand the list for all k < 1M and all n < 100K. If anyone wants to contribute to the effort, let me know. I'll be sieving to n=10K later this week, which won't take long.

n's > 66K make the current top-20 twin prime list.


Gary

gd_barnes 2007-06-28 05:02

How sieving multiple k's and n's on twins ?
 
[quote=Citrix;109183]Twins upto n=500. These twins are really rare..

[/quote]

Sorry we duplicated efforts there Citrix. Yes, twins are rare, which makes them special. :smile: Imagine triplets or quads! I checked my new extended list and all of yours are on there.

I'm curious...how are you sieving multiple k's and n's on twins? Here's what I'm doing but I'm thinking there must be a better way:

1. Use NewPGen and have it increment the n by 1 each time after it searches the range of k (in my case was 1 to 100000) that I want. For n < 2500, I just let it do each n almost instantly by sieving to only 1M since LLR is finding them rapidly. For n > 2500, I sieved to 100M. But these were just guesses because of the problem in #2.

2. #1 has the annoying problem of creating 1 file for each n, which I can't seem to get around. So I'm forced to then copy all of the files into one big file. I've been doing them 500 n's at a time.

3. Fortunately LLR, being the great program that it is, is able to accept one big file with many lines of XXXX:T:0:2:3 throughout the middle of it so it's able to handle many k's and n's in the same file.


I found the above to still be far faster than attempting to use the very slow Proth program and letting it both sieve and find primes. Do you know of a faster (or at least cleaner) way to sieve multiple k's and n's into one file? If there's some other software out there that would be better, could you provide a link to it? I get all of these various sites confused at times.

It doesn't take too long to copy 500 files into 1 file and then delete the 500 files. But the main problem with it only sieving 1 n at a time is that I can't get an accurate estimate of how many primes are being removed per second. I mean for 1 n, it might be removing only 1 per second but if it were sieving all 500 n at once, it might be removing 500 per second. But I don't know yet because in only sieving to 100M, it finishes fast enough that it doesn't show the rate. I finally resorted to just writing down the starting and ending time on my watch to determine how much total sieving and LLR time it was taking for each range of 500 n to get an idea of when to increase my sieve limit.


Thanks,
Gary

Joshua2 2007-06-28 20:37

What is the goal of all this? Is it supposed to help the TPS project some way? I don't quite get what you guys are doing.

gd_barnes 2007-06-29 06:56

It's in the process
 
[quote=Joshua2;109252]What is the goal of all this? Is it supposed to help the TPS project some way? I don't quite get what you guys are doing.[/quote]

What is our goal? We're finding twin primes! I believe the goal of these forums is to find all of the primes of certain forms; not just the large ones. Our goal here is to find all of the TWIN primes of a certain form. Some people prefer to find very few large primes. We here prefer to find all of the small primes and gradually build our way up to the large primes. Since very few people are interested in this sort of 'dirty work', that is our task here. This is no different than our < 300 site. It doesn't show just large primes, it shows them all.

The great 19th-century mathematician Carl Friedrich Gauss didn't start trying to manually calculate prime numbers beginning at 1 billion or higher just to make a big splash or set some sort of calculation record. He painstakingly started where others had left off and manually calculated ALL primes up to 3 million in order to construct some of the greatest mathematical proofs and theories of all time.

It is only in the painstaking process of starting with the elementary building blocks of a process that one can glean the information needed in order to gain a deeper understanding of the process as a whole.

:smile:


Gary

gd_barnes 2007-07-03 20:39

List of twins completed to n=10K
 
1 Attachment(s)
I've completed searching for twins up to n=10K for k=1 to 100K. The list is attached. There are only 23 twins between n=5K and 10K. I can see that I'm going to need to expand the list up to k=1M or 10M to get any significant # of twins for n>10K. (no surprise there!)

I also checked the list for triplets and quadruplets. The largest of all 3 kinds that I've found so far are:

Twins: 33891*2^9869-1,+1

Triplets: 32811*2^2707-1,+1,+5

Quads: 3741*2^153-1,+1,+5,+7

I also checked triplets and quads for the form of k*2^n-7,-5,-1,+1 and k*2^n-5,-1,+1 but there were none as large.

-7, -5, +5, and +7 primes were checked at [URL]http://www.alpertron.com.ar/ECM.HTM[/URL]. The largest ones were also checked with Primo software.

Although the list looks small now, it only takes an exponent of 10475 to make the top-10 triplets list and an exponent of 3489 to make the top-10 quads list. Largest k-tuplets are shown at [URL="http://www.ltkz.demon.co.uk/ktuplets.htm"]www.ltkz.demon.co.uk/ktuplets.htm[/URL].


Gary

gd_barnes 2007-08-21 02:40

TPS extended to n=15K up to k < 1M.
 
1 Attachment(s)
I have now extended the Riesel-Proth twin prime search up to n=15K for all k < 1M.

I am attaching two lists:
1. The original list for k < 100K extended to n=15K sorted by k. 8 additional twins were found at this low level of k. To find them easily, you'll probably need to look at the list in #2.

2. A new list for k < 1M for 10K < n <= 15K sorted by n. There were a total of 85 twins in this range. Note that it includes the 8 twins from #1.


The most interesting find was 915 * 2 ^ 11455 +/- 1. It is the only twin that I've seen where k is < 1K and n is > 10K. In doing a search of the top-5000 site archives for twins, I see that it has already been found but there are none greater for k < 1K. A further analysis of the top-5000 archives shows that 80 of these 85 twins were never stored there so there is plenty of new information here.

I did tests for both +5 and -5 triplets on all 85 new twins. None were found. Eventually it would be interesting to extend the k to 1M for n < 10K and see if some higher triplets or quads can be found then what was posted last time but NOT to list more small twins. The chances are slim that a triplet or quad will be found for k < 1M for n > 15K.

I am now sieving for twins in the range of 15K < n <= 20K and k < 1M.


Gary

MooMoo2 2007-08-21 18:02

[QUOTE=gd_barnes;112763]I am now sieving for twins in the range of 15K < n <= 20K and k < 1M.


Gary[/QUOTE]
Just out of curiosity, what software are you using to sieve that range?

gd_barnes 2007-08-23 19:59

Sieving software used for all TPS
 
[quote=MooooMoo;112801]Just out of curiosity, what software are you using to sieve that range?[/quote]

I'm using NewPGen with the increment counter turned on but it is anything but ideal. Unfortunately there is no real good software that I am aware of to sieve for twins across both multiple k's and n's. Proth works well at low n but is much too slow at the level of n that I'm now at. NewPGen overcomes some of the issue because it is very fast on a fixed n search but still not nearly as efficient as being able to sieve the entire range of k's and n's at once.

What I do is sieve each n to P=5G, which takes just over a minute on a high-speed machine, and then it automatically goes on to the next n. Unfortunately it creates one file per n so every 1000 n, I copy all 1000 files into one big sieve file and feed it to LLR. Fortunately LLR doesn't care if the T:0:2:3 line is embedded multiple times in the sieve. Thus the copy doesn't require any extra editing by me and the big file is only around 11-12 MB for 1000 n.

At P=5G for a range of k=1 to 1M for each n, it's removing candidates at about 0.8-0.9 sec. each. LLR at n=15K is taking about 0.4 secs. for each candidate so that's a little high to sieve but it will probably be pretty close as n approaches 20K. I also prefer to sieve a little too far instead of not far enough.

Since it's not sieving the entire range at once like you're able to do for a fixed n search on the n=333333 TPS project, this is certainly not a particularly efficient approach but is the best that I could come up with for the time being. I thought of sieving for Riesel's, using the output to sieve for Proth's, and then LLR what is left but the files got very big real quick for such a large range of k, causing extra effort to have to split them up. What I really need is a combination of Srsieve for a multi-k search and NewPGen's TPS algorithm.

If anyone can improve on my method here, I'm all ears! :smile:


Gary

gd_barnes 2007-09-24 20:19

TPS extended to n=17K to k < 1M
 
1 Attachment(s)
I had a request to post my latest on this effort. Attached is the Riesel-Proth twin prime search up to n=17K for all k < 1M. There were 16 twins for 15K < n <= 17K for k < 1M. Two of them were k < 100K.

With this effort, I also tested all Riesel primes for k < 1M shown on the RPS site, i.e. [URL="http://www.15k.org"]www.15k.org[/URL], for Proth primes. The continuous tested ranges of k shown on one of the listings take this into account. No additional twins were found above what I've already found.

I now have 2 high-speed cores LLRing up to n=20K. They should be done within a week and I'll post an updated list at that time.

I tested all 16 new twins for -5 and +5 triplets. None were found.


Gary

XYYXF 2007-09-28 23:13

That reminded me...

[url]http://tech.groups.yahoo.com/group/primenumbers/message/9836[/url]

gd_barnes 2007-10-08 05:48

[quote=XYYXF;115328]That reminded me...

[URL]http://tech.groups.yahoo.com/group/primenumbers/message/9836[/URL][/quote]

A very interesting list indeed. I spot-checked about 40-50 of this list where k < 100K vs. my own and found no problems.

If you know someone in the forum there, perhaps you could ask them to expand the list to include the first prime odd-k for each n up to n=10K. That would be interesting to see.

My LLR is up to n=20K for k < 1M now. See next post...

Thanks for sharing!


Gary

gd_barnes 2007-10-08 06:23

Riesel-Proth TPS up to n=20K for k < 1M
 
1 Attachment(s)
Attached are Riesel-Proth twin prime search lists up to n=20K for all k < 1M. There were 40 twins for 15K<n<=20K. A surprising 9 of them were for k < 100K.

I have also started a web page to list all of these twins. It's in its initial stages of creation. Right now, it only includes k's < 1M that have twins for 10K<=n<=20K and ALL twins for k<100K that has a twin for n>=10K. Eventually I will have all twins currently in the attachments here on the page. Here it is... [URL="http://gbarnes017.googlepages.com/twinsk1-1Mn10K-20K.htm"]gbarnes017.googlepages.com/twinsk1-1Mn10K-20K.htm[/URL].

Sieving is now complete up to n=25K and LLR has just begun. I'll continue posting in n=5K pieces until n=30K and then drop back to n=10K pieces after that.


Gary

gd_barnes 2007-10-10 07:07

New web pages for twins
 
The web page in the above message is no longer valid. I have now created two web pages that have all twins previously listed in the attachments in this thread. They are here:

[URL]http://www.noprimeleftbehind.net/gary/twins100K.htm[/URL]
[URL]http://www.noprimeleftbehind.net/gary/twins1M.htm[/URL]

A special thanks to Karsten Bonath (kar_bon) for helping out by writing a script to format the twins on the k<100K page.


Gary

XYYXF 2007-10-14 14:22

[QUOTE=gd_barnes;115888]A very interesting list indeed. I spot-checked about 40-50 of this list where k < 100K vs. my own and found no problems.

If you know someone in the forum there, perhaps you could ask them to expand the list to include the first prime odd-k for each n up to n=10K. That would be interesting to see.[/QUOTE]It was me who posted this list on that forum. :wink: I'll try to find the data I used to generate it...

jasong 2007-10-15 05:20

[QUOTE=gd_barnes;115888]If you know someone in the forum there, perhaps you could ask them to expand the list to include the first prime odd-k for each n up to n=10K. That would be interesting to see.

Gary[/QUOTE]
[very masculine voice]
THIS SOUNDS LIKE A JOB FOR...PFGW!!!
[/very masculine voice]

Now, if I could just find my PFGW suit. It's got 'PFGW Man' written on the front, and it shows off my anatomy so well that I've been banned from wearing it in a few places.

gd_barnes 2007-10-15 05:46

[quote=jasong;116365][very masculine voice]
THIS SOUNDS LIKE A JOB FOR...PFGW!!!
[/very masculine voice]

Now, if I could just find my PFGW suit. It's got 'PFGW Man' written on the front, and it shows off my anatomy so well that I've been banned from wearing it in a few places.[/quote]


:lol::missingteeth::lol:

Good one, Jasong! Had me rolling on the floor!

I agree, PFGW would be excellent for creating such a list.


Gary

gd_barnes 2007-10-15 05:50

[quote=XYYXF;116326]It was me who posted this list on that forum. :wink: I'll try to find the data I used to generate it...[/quote]


Excellent! My goal with all of this is to have the most complete and accurate list of Riesel-Proth twin primes anywhere on the web. The more information, the merrier! :grin:


Gary

sghodeif 2007-10-22 02:08

[QUOTE=gd_barnes;116368]Excellent! My goal with all of this is to have the most complete and accurate list of Riesel-Proth twin primes anywhere on the web. The more information, the merrier! :grin:


Gary[/QUOTE]


Did u think to find twin primes as big as we want by finding a general formula ????

I wish all the best for u and all mathematicians .

Sghodeif ,
:question:

gd_barnes 2007-11-05 21:20

No general formula that I am aware of for primes of any kind. That's what prime-searchers everywhere are hoping to find! :smile:


G

gd_barnes 2007-11-05 21:35

My Riesel/Proth twin search for k<1M is now up to n=23.5K. See the aforemention web pages for all of the twins found. I'll most likely put a 2nd core on this in the near future. It's getting quite a bit slower past n=20K.


Gary

robert44444uk 2007-11-17 13:59

Gosh this is a major piece of work. GL in your search!!!!

gd_barnes 2007-11-19 05:38

Tks & another side effort
 
[quote=robert44444uk;118692]Gosh this is a major piece of work. GL in your search!!!![/quote]

Thanks, Robert. I'll be hitting n=25K here on core 1 in the next couple of days. Sieving is now up to n=35K and LLRing is speeding up with the addition of a 2nd core to the effort. (Core 2 has tested n=25K-25.6K so far.) We're only averaging about 3 twins for each n=1K range now for k < 1M and the last twin for k < 100K was at n=22312. I expect plenty more but they're thinning out rapidly.

I now update the web page about twice for every n=1K range that I test.

You might be interested in another 'side effort' that I have going on. I have a web page now for all known primes of the form k*10^n-1 where k < 10M at [URL="http://gbarnes017.googlepages.com/primes-kx10n-1.htm"]gbarnes017.googlepages.com/primes-kx10n-1.htm[/URL].

The page is intended for k's of all sizes and I do have several extremely high-weight k's > 10M listed but there are still many primes > 10M from the top-5000 site that aren't on there yet.

I thought you might be interested in the page because Jens Andersen and Axn1 have been battling it out for the k with the most primes and we've got some very large highly prolific k's now! I know how you like super-large super-high-weight k's. The testing is being coordinated in the Riesel Prime Search project here at this thread: [URL="http://mersenneforum.org/showthread.php?t=9578"]mersenneforum.org/showthread.php?t=9578[/URL]. Come over and try to beat our top record of 56 primes on a 20-digit k! :smile:


Gary

gd_barnes 2007-11-22 06:02

The "all-twin" search for k < 1M is now up to n=25.6K. See the web pages in this thread.


Gary

gd_barnes 2007-12-27 04:34

The "all-twin" search for k < 1M is now complete to n=30K. They are all shown at:
[URL]http://gbarnes017.googlepages.com/twins100K.htm[/URL]
[URL]http://gbarnes017.googlepages.com/twins1M.htm[/URL]

Here are some statistics for n=20K-30K:

1 twin for k < 10K:
7485*2^20023+/-1

2 twins for 10K < k < 100K:
70497*2^27652+/-1
31257*2^22312+/-1

39 twins for 100K < k < 1M:
(highest 10 listed; see 'twins1M' web page for rest)
815751*2^29705+/-1
953337*2^28520+/-1
771843*2^28494+/-1
445569*2^28353+/-1
198417*2^27858+/-1
293445*2^27643+/-1
939015*2^27542+/-1
228015*2^27509+/-1
294723*2^27504+/-1
766293*2^27110+/-1
(etc.)

All checked for triplets...no luck.

Testing is currently at n=30.4K and sieving at n=40K. The search on 2 cores continues to n=100K. A 3rd core will be added at n=40K.


Gary

gd_barnes 2008-02-09 04:29

The "all-twin" search for k < 1M is now up to n=36.1K. See the web pages in this thread.

There were 11 twins from n=30K-36.1K. Also found was the [B]largest known Riesel/Proth twin for k<100K[/B]. Here is the complete list for the range:

k<100K:
51315*2^32430+/-1

100K<k<1M:
892881*2^36075+/-1
338205*2^35351+/-1
959715*2^34895+/-1
143835*2^33826+/-1
649545*2^33398+/-1
440685*2^31989+/-1
249435*2^30977+/-1
282891*2^30309+/-1
383775*2^30279+/-1
523851*2^30197+/-1


Current known Riesel/Proth twin prime records:
k<1M 134583*2^80828+/-1 (from top-5K site)
k<100K 51315*2^32430+/-1 (from this effort)
k<10K 7485*2^20023+/-1 (from top-5K site)
k<1K 915*2^11455+/-1 (from top-5K site)


Gary

gd_barnes 2008-02-11 20:45

I posted 2 days too early. In just another 100n up to n=36.2K, I found 2 more twins, one for k<100K!:

47553*2^36172+/-1
296139*2^36125+/-1


The first one is the new standard to beat for k<100K.


Gary

robert44444uk 2008-02-21 06:32

[QUOTE=gd_barnes;115888]
If you know someone in the forum there, perhaps you could ask them to expand the list to include the first prime odd-k for each n up to n=10K. That would be interesting to see.

Gary[/QUOTE]

[QUOTE=jasong;116365][very masculine voice]
THIS SOUNDS LIKE A JOB FOR...PFGW!!!
[/very masculine voice]

Now, if I could just find my PFGW suit. It's got 'PFGW Man' written on the front, and it shows off my anatomy so well that I've been banned from wearing it in a few places.[/QUOTE]

It appears that Jasong couldn't find his PFGW suit, perhaps it was in a closet marked "unwanted Xmas gifts"

Anyway, analysing Gary's <100K site produces the following table:

I will try to fill up to n=500

Regards

Robert

[code]
n 1st k
1 3
2 1
3 9
4 15
5 81
6 3
7 9
8 57
9 45
10 15
11 99
12 165
13 369
14 45
15 345
16 117
17 381
18 3
19 69
20 447
21 81
22 33
23 1179
24 243
25 765
26 375
27 81
28 387
29 45
30 345
31 681
32 585
33 375
34 267
35 741
36 213
37 429
38 3093
39 165
40 267
41 255
42 1095
43 9
44 147
45 849
46 405
47 1491
48 177
49 1941
50 927
51 1125
52 1197
53 2001
54 333
55 519
56 1065
57 585
58 657
59 129
60 147
61 141
62 417
63 9
64 1623
65 99
66 2985
67 2469
68 4497
69 5259
70 597
71 7029
72 315
73 3081
74 2457
75 4161
76 603
77 3591
78 2697
79 3681
80 213
81 2079
82 1545
83 4089
84 165
85 1455
86 10287
87 1629
88 387
89 3321
90 14487
91 849
92 1467
93 3339
94 3747
95 6639
96 7737
97 8265
98 15735
99 5589
100 4107
101 9225
102 537
103 2079
104 1203
105 1515
106 1323
107 7245
108 6897
109 20631
110 2205
111 2175
112 3087
113 11145
114 7887
115 14841
116 2673
117 5961
118 3303
119 5565
120 3957
121 9849
122 1497
123 1125
124 1983
125 699
126 2565
127 8721
128 4467
129 5835
130 6063
131 1089
132 3117
133 1455
134 3105
135 6129
136 22365
137 3555
138 24453
139 8121
140 4143
141 1179
142 6903
143 309
144 11505
145 14121
146 17037
147 1419
148 17157
149 5715
150 345
151 13179
152 4497
153 3741
154 10803
155 105
156 30657
157 14439
158 14445
159 7569
160 17295
161 25425
162 6555
163 2121
164 3717
165 13731
166 7737
167 18711
168 765
169 1881
170 19335
171 32361
172 2847
173 2115
174 4155
175 1941
176 1383
177 24771
178 2277
179 10479
180 4287
181 441
182 19617
183 27261
184 2493
185 5481
186 28227
187 20175
188 1935
189 45
190 525
191 13719
192 8337
193 12495
194 18087
195 27099
196 9753
197 56745
198 4245
199 8265
200 63855
201 27261
202 69855
203 14199
204 1755
205 5529
206 1197
207 54639
208 69753
209 10461
210 10575
211 9
212 3615
213 26145
214 9225
215 5859
216 12255
217 6615
218 16653
219 18531
220 24087
221 6555
222 7947
223 12909
224 49203
225 49341
226 10857
227 3405
228 25665
229 19041
230 21255
231 2571
232 30015
233 47079
234 24915
235 77751
236 33333
237 16641
238 135
239 17289
240 10197
241 4059
242 1023
243 50319
244 22113
245 9915
246 17535
247 19041
248 15795

250 23007
251 5139
252 17787
253 15519
254 12957
255 1215
256 64647
257 9951
258 74253
259 2805
260 2475
261 15711
262 25767
263 9789
264 165
265 13209
266 19593
267 33105

269 969
270 98907
271 19335
272 22317
273 10635
274 13713
275 34245
276 41085
277 24129
278 26025
279 24579

281 3381
282 165
283 20175
284 23853
285 25881
286 61647
287 39315
288 2667
289 67695
290 34647
291 1899
292 33735
293 48861
294 2373
295 58179
296 66507
297 9609
298 20085
299 6405

301 44529
302 16575
303 22815
304 99297
305 21015
306 21075
307 91455
308 9993
309 15069
310 9543
311 79719
312 36195
313 14649
314 7605
315 67461
316 16035
317 12951
318 20295
319 41349
320 82473
321 20781
322 19293
323 88791
324 55605
325 23295
326 25473
327 10071
328 28653
329 48489
330 12477
331 7791

333 669
334 16437
335 42699
336 93765
337 12909
338 5253
339 23415

341 21585
342 76995

344 573
345 31719
346 15717
347 43011
348 33765
349 28149
350 71253

352 14727
353 85431
354 10545
355 7785
356 38853
357 70851
358 65385
359 9129

361 5049
362 49815
363 26871

365 9369
366 74763
367 18669
368 16905
369 49299
370 12543
371 3321


374 40257
375 26679
376 14223
377 23709
378 22713
379 66039
380 1023
381 67749
382 34683


385 72609

387 1701
388 56817
389 10791
390 39345
391 615

393 95151
394 67023
395 21315
396 28065
397 24039
398 19065

400 48207
401 28941
402 83337

404 22887
405 74085
406 35253
407 79215
408 31635
409 36825
410 50835

412 58065
413 86061
414 39513
415 17061
416 32025
417 30705
418 1743
419 71919

421 66075
422 84057
423 81651
424 65337


427 83139
428 36903
429 39039

431 66219
432 69477
433 50181
434 54033
435 5415
436 30987

438 24693
439 56259
440 25077
441 15255
442 18795
443 3921
444 35793
445 9345
446 18663
447 30849
448 57717
449 69285

451 26355

453 17631
454 65193
455 2085
456 9063
457 15561
458 4323

460 34725
461 92235

463 53991
464 63903
465 24351
466 12147
467 33351
468 2565

470 5547

472 8787

474 49053
475 13935
476 33375
477 33315

479 53019




484 50295
485 27975


488 7503
489 73671
490 37095
491 37719
492 1995
493 97449
494 39207
495 27261

497 99015
498 37755

500 52305

502 35397
503 66735
504 35877
505 74985

507 5565



511 43485
512 51765

514 53355
515 87951
516 12045
517 66375

519 83211
520 4257
521 17709
522 80175
523 76089
524 47403
525 5775
526 62337
527 43371
528 43137
529 10365
530 74367



534 84627

536 49893
537 23541
538 2007
539 12711

541 8031

543 40119

545 18801
546 297
547 5979
548 97293

550 26853
551 4035
552 29187

554 70923
555 67329


558 80385

560 39243





566 75225
567 28131

569 60411
570 25485
571 27909
572 20037
573 14259
574 70107
575 38835




580 88257
581 76569
582 22587
583 28005
584 15177

586 83175

588 50235

590 42777

592 86385
593 45315


596 41625


599 74229
600 82023
603 33885
610 86973
611 8781
612 47313
613 94005
615 34059
616 79353
617 29919
618 54015
619 18429
620 55203
621 46035
622 87795
623 12285
626 16323
635 52419
636 78033
643 91629
644 84045
647 24249
648 78453
650 3723
654 61353
655 38835
657 21999
658 75447
660 50943
661 77505
662 32067
669 58725
672 15993
677 3405
680 7605
684 24537
689 13689
690 46545
691 38229
692 47937
694 13197
695 2985
696 96813
703 5355
707 37149
710 60693
711 25029
713 92529
714 35817
717 78561
718 86193
720 89577
725 20115
726 213
727 35589
728 30933
734 50025
736 5013
737 11175
738 95937
740 51975
742 58683
743 48075
744 9753
745 9165
748 42777
750 22407
758 84057
762 48615
765 73059
767 315
768 65475
771 56199
773 62391
776 26775
780 51777
781 88299
786 58257
787 17481
788 20997
789 19485
793 98649
794 18495
799 95565
805 72861
809 47055
811 70539
813 10125
817 64401
821 49041
824 66975
827 12285
828 78375
829 1365
831 24609
833 49539
837 62361
841 86679
844 87303
846 61785
847 5265
852 53763
853 18885
856 87495
857 88095
858 63135
861 37359
863 93765
865 31575
867 60681
873 55209
874 75783
875 50565
877 31005
880 4107
882 17145
884 25833
886 87465
888 45675
889 59421
896 11925
898 59925
899 68901
903 23901
906 24747
908 88407
914 5673
921 94629
922 10533
925 50595
927 80139
928 79623
929 83271
933 94335
934 41727
936 52953
940 5955
945 60729
947 27825
948 61425
949 23805
950 13503
953 21741
954 45243
957 77805
958 66417
961 98061
965 7995
966 82995
969 77565
973 16011
976 68313
983 10485
988 97323
992 56685
994 24963
1007 37275
1008 48225
1013 74091
1014 35523
1018 19887
1028 98493
1032 177
1034 16233
1037 71421
1045 94065
1048 3885
1052 85845
1055 91755
1056 88515
1057 33405
1059 60099
1066 90165
1067 85911
1070 70623
1075 13131
1076 50025
1084 15315
1084 16665
1086 69417
1098 58287
1102 27435
1104 4275
1107 48681
1110 11007
1122 60513
1134 83205
1142 11007
1156 1035
1167 54339
1168 62823
1173 52461
1175 46791
1188 65613
1193 84435
1197 45201
1217 14199
1221 88329
1228 79203
1229 42399
1237 74109
1241 13629
1244 64233
1245 88575
1251 75705
1256 53865
1261 32265
1267 95229
1270 71805
1272 50655
1274 95847
1282 99105
1286 9183
1295 49119
1299 3339
1312 15657
1314 46965
1321 1065
1325 62265
1327 2625
1338 92115
1354 38565
1355 62289
1367 7755
1383 67821
1389 97899
1390 14877
1391 76479
1394 88155
1402 80103
1406 18003
1408 98475
1425 86205
1431 75519
1440 10083
1441 74031
1446 93837
1447 51651
1462 15927
1466 74505
1468 85077
1471 81489
1475 66381
1483 57891
1500 32547
1509 86361
1532 83973
1533 36045
1553 291
1556 81255
1566 42507
1599 15375
1603 89895
1616 78327
1623 33549
1625 65835
1640 34215
1652 33957
1660 20733
1672 56685
1676 96897
1677 24969
1678 34725
1689 27765
1718 51747
1721 45951
1757 41229
1763 29481
1767 84159
1786 42825
1793 95151
1794 98583
1820 79335
1823 57495
1849 87585
1858 29835
1860 13317
1869 82275
1880 22035
1900 4425
1933 39171
1954 8007
1966 63237
1971 3885
1985 31545
2024 10095
2083 84609
2112 59553
2129 11655
2138 40215
2162 33117
2182 53955
2185 66729
2191 4359
2196 24405
2213 6201
2253 75219
2255 7419
2278 43947
2280 25293
2333 43089
2470 60957
2473 52935
2498 56727
2501 86085
2518 94815
2529 33939
2569 79029
2637 89115
2679 61269
2685 93429
2695 59415
2707 32811
2743 52011
2748 84255
2821 6075
2827 20805
2834 61947
2844 58053
2846 10725
2867 36159
2887 88629
2899 69735
2945 12195
3004 57267
3017 5559
3074 90705
3104 58143
3179 41205
3215 43095
3229 49449
3283 1149
3426 34365
3460 2403
3503 83331
3551 36159
3553 4845
3587 51591
3601 88311
3641 69069
3646 40713
3722 5373
3826 4935
3830 21417
3846 24015
3867 31539
3873 88071
3891 80661
3942 34407
3989 49455
4335 32721
4619 66969
4787 74565
4884 22767
4901 2565
4997 31569
5147 58311
5154 88335
5316 43923
5396 85107
5459 82005
5738 58983
5907 5775
6177 79515
6593 45639
6634 4737
6885 33801
7170 77367
7618 74313
7631 54729
7727 74229
7768 33957
8060 69927
8160 31335
8335 3975
8529 459
8825 53985
9154 61593
9869 33891
10601 10941
10929 34911
11455 915
11493 57201
11710 78045
12178 73005
13153 3981
13466 44943
15263 88665
15770 74193
17372 77517
17527 14439
17705 96321
17987 88269
18989 56361
19742 98067
19817 53889
20023 7485
22312 31257
27652 70497
32430 51315
36172 47553

[/code]

robert44444uk 2008-02-21 09:14

low k for each n to 1000
 
Here is a table of lowest k for each twin to n=1000

Does anyone want to take further?

* denotes jumping champion

[code]

1 3*
2 1
3 9*
4 15*
5 81*
6 3
7 9
8 57
9 45
10 15
11 99*
12 165*
13 369*
14 45
15 345
16 117
17 381*
18 3
19 69
20 447*
21 81
22 33
23 1179*
24 243
25 765
26 375
27 81
28 387
29 45
30 345
31 681
32 585
33 375
34 267
35 741
36 213
37 429
38 3093*
39 165
40 267
41 255
42 1095
43 9
44 147
45 849
46 405
47 1491
48 177
49 1941
50 927
51 1125
52 1197
53 2001
54 333
55 519
56 1065
57 585
58 657
59 129
60 147
61 141
62 417
63 9
64 1623
65 99
66 2985
67 2469
68 4497*
69 5259*
70 597
71 7029*
72 315
73 3081
74 2457
75 4161
76 603
77 3591
78 2697
79 3681
80 213
81 2079
82 1545
83 4089
84 165
85 1455
86 10287*
87 1629
88 387
89 3321
90 14487*
91 849
92 1467
93 3339
94 3747
95 6639
96 7737
97 8265
98 15735*
99 5589
100 4107
101 9225
102 537
103 2079
104 1203
105 1515
106 1323
107 7245
108 6897
109 20631*
110 2205
111 2175
112 3087
113 11145
114 7887
115 14841
116 2673
117 5961
118 3303
119 5565
120 3957
121 9849
122 1497
123 1125
124 1983
125 699
126 2565
127 8721
128 4467
129 5835
130 6063
131 1089
132 3117
133 1455
134 3105
135 6129
136 22365*
137 3555
138 24453*
139 8121
140 4143
141 1179
142 6903
143 309
144 11505
145 14121
146 17037
147 1419
148 17157
149 5715
150 345
151 13179
152 4497
153 3741
154 10803
155 105
156 30657*
157 14439
158 14445
159 7569
160 17295
161 25425
162 6555
163 2121
164 3717
165 13731
166 7737
167 18711
168 765
169 1881
170 19335
171 32361*
172 2847
173 2115
174 4155
175 1941
176 1383
177 24771
178 2277
179 10479
180 4287
181 441
182 19617
183 27261
184 2493
185 5481
186 28227
187 20175
188 1935
189 45
190 525
191 13719
192 8337
193 12495
194 18087
195 27099
196 9753
197 56745*
198 4245
199 8265
200 63855*
201 27261
202 69855*
203 14199
204 1755
205 5529
206 1197
207 54639
208 69753
209 10461
210 10575
211 9
212 3615
213 26145
214 9225
215 5859
216 12255
217 6615
218 16653
219 18531
220 24087
221 6555
222 7947
223 12909
224 49203
225 49341
226 10857
227 3405
228 25665
229 19041
230 21255
231 2571
232 30015
233 47079
234 24915
235 77751*
236 33333
237 16641
238 135
239 17289
240 10197
241 4059
242 1023
243 50319
244 22113
245 9915
246 17535
247 19041
248 15795
249 168831*
250 23007
251 5139
252 17787
253 15519
254 12957
255 1215
256 64647
257 9951
258 74253
259 2805
260 2475
261 15711
262 25767
263 9789
264 165
265 13209
266 19593
267 33105
268 45213
269 969
270 98907
271 19335
272 22317
273 10635
274 13713
275 34245
276 41085
277 24129
278 26025
279 24579
280 128505
281 3381
282 165
283 20175
284 23853
285 25881
286 61647
287 39315
288 2667
289 67695
290 34647
291 1899
292 33735
293 48861
294 2373
295 58179
296 66507
297 9609
298 20085
299 6405
300 230085*
301 44529
302 16575
303 22815
304 99297
305 21015
306 21075
307 91455
308 9993
309 15069
310 9543
311 79719
312 36195
313 14649
314 7605
315 67461
316 16035
317 12951
318 20295
319 41349
320 82473
321 20781
322 19293
323 88791
324 55605
325 23295
326 25473
327 10071
328 28653
329 48489
330 12477
331 7791
332 345675*
333 669
334 16437
335 42699
336 93765
337 12909
338 5253
339 23415
340 128625
341 21585
342 76995
343 153645
344 573
345 31719
346 15717
347 43011
348 33765
349 28149
350 71253
351 127305
352 14727
353 85431
354 10545
355 7785
356 38853
357 70851
358 65385
359 9129
360 162243
361 5049
362 49815
363 26871
364 210447
365 9369
366 74763
367 18669
368 16905
369 49299
370 12543
371 3321
372 138765
373 151839
374 40257
375 26679
376 14223
377 23709
378 22713
379 66039
380 1023
381 67749
382 34683
383 114951
384 126747
385 72609
386 114687
387 1701
388 56817
389 10791
390 39345
391 615
392 108195
393 95151
394 67023
395 21315
396 28065
397 24039
398 19065
399 102795
400 48207
401 28941
402 83337
403 101535
404 22887
405 74085
406 35253
407 79215
408 31635
409 36825
410 50835
411 273429
412 58065
413 86061
414 39513
415 17061
416 32025
417 30705
418 1743
419 71919
420 224415
421 66075
422 84057
423 81651
424 65337
425 237765
426 251475
427 83139
428 36903
429 39039
430 110157
431 66219
432 69477
433 50181
434 54033
435 5415
436 30987
437 102309
438 24693
439 56259
440 25077
441 15255
442 18795
443 3921
444 35793
445 9345
446 18663
447 30849
448 57717
449 69285
450 155463
451 26355
452 258345
453 17631
454 65193
455 2085
456 9063
457 15561
458 4323
459 104661
460 34725
461 92235
462 229227
463 53991
464 63903
465 24351
466 12147
467 33351
468 2565
469 108795
470 5547
471 139935
472 8787
473 184281
474 49053
475 13935
476 33375
477 33315
478 141315
479 53019
480 162897
481 233115
482 143163
483 150939
484 50295
485 27975
486 101055
487 156051
488 7503
489 73671
490 37095
491 37719
492 1995
493 97449
494 39207
495 27261
496 208845
497 99015
498 37755
499 131439
500 52305
501 207945
502 35397
503 66735
504 35877
505 74985
506 103107
507 5565
508 216243
509 107631
510 262035
511 43485
512 51765
513 134115
514 53355
515 87951
516 12045
517 66375
518 366555*
519 83211
520 4257
521 17709
522 80175
523 76089
524 47403
525 5775
526 62337
527 43371
528 43137
529 10365
530 74367
531 104409
532 347457
533 396441*
534 84627
535 278535
536 49893
537 23541
538 2007
539 12711
540 174297
541 8031
542 121065
543 40119
544 330015
545 18801
546 297
547 5979
548 97293
549 157209
550 26853
551 4035
552 29187
553 190485
554 70923
555 67329
556 130227
557 105381
558 80385
559 300561
560 39243
561 112581
562 176205
563 199989
564 117243
565 120069
566 75225
567 28131
568 239247
569 60411
570 25485
571 27909
572 20037
573 14259
574 70107
575 38835
576 247035
577 126615
578 136413
579 404871*
580 88257
581 76569
582 22587
583 28005
584 15177
585 210051
586 83175
587 173355
588 50235
589 133911
590 42777
591 389799
592 86385
593 45315
594 179163
595 257529
596 41625
597 268461
598 147135
599 74229
600 82023
601 135585
602 190695
603 33885
604 113475
605 264849
606 129705
607 368775
608 217143
609 228651
610 86973
611 8781
612 47313
613 94005
614 261075
615 34059
616 79353
617 29919
618 54015
619 18429
620 55203
621 46035
622 87795
623 12285
624 143265
625 104091
626 16323
627 140739
628 137907
629 223569
630 643737*
631 229749
632 506475
633 123891
634 242523
635 52419
636 78033
637 137835
638 227283
639 198459
640 558087
641 664941*
642 394203
643 91629
644 84045
645 274395
646 250923
647 24249
648 78453
649 109809
650 3723
651 205251
652 375843
653 624165
654 61353
655 38835
656 256605
657 21999
658 75447
659 101661
660 50943
661 77505
662 32067
663 374901
664 567573
665 258651
666 249345
667 127041
668 144717
669 58725
670 392013
671 130689
672 15993
673 178689
674 252693
675 376929
676 257613
677 3405
678 169893
679 469755
680 7605
681 217221
682 386127
683 151845
684 24537
685 243879
686 141705
687 246405
688 224625
689 13689
690 46545
691 38229
692 47937
693 152421
694 13197
695 2985
696 96813
697 102789
698 157587
699 436095
700 179865
701 317481
702 169827
703 5355
704 253995
705 330171
706 312387
707 37149
708 270177
709 158115
710 60693
711 25029
712 700005*
713 92529
714 35817
715 629211
716 118413
717 78561
718 86193
719 101361
720 89577
721 119721
722 150567
723 715449*
724 102213
725 20115
726 213
727 35589
728 30933
729 343359
730 308853
731 111285
732 142047
733 597339
734 50025
735 123585
736 5013
737 11175
738 95937
739 140481
740 51975
741 170625
742 58683
743 48075
744 9753
745 9165
746 131937
747 113271
748 42777
749 227871
750 22407
751 1025925
752 140967
753 110775
754 797433*
755 490281
756 490107
757 125169
758 84057
759 133521
760 404775
761 913671*
762 48615
763 242445
764 141243
765 73059
766 988437*
767 315
768 65475
769 484455
770 354417
771 56199
772 743433
773 62391
774 173667
775 125385
776 26775
777 188979
778 410187
779 239271
780 51777
781 88299
782 406707
783 108351
784 364203
785 193515
786 58257
787 17481
788 20997
789 19485
790 116103
791 217809
792 488805
793 98649
794 18495
795 119259
796 212157
797 526701
798 679623
799 95565
800 207663
801 291951
802 353127
803 267795
804 442227
805 72861
806 613383
807 136119
808 142785
809 47055
810 539157
811 70539
812 191085
813 10125
814 105537
815 234315
816 385887
817 64401
818 789453
819 377451
820 125385
821 49041
822 640677
823 268101
824 66975
825 134481
826 515955
827 12285
828 78375
829 1365
830 554925
831 24609
832 524217
833 49539
834 130323
835 155085
836 1175493*
837 62361
838 127905
839 238395
840 916815
841 86679
842 129237
843 122685
844 87303
845 451209
846 61785
847 5265
848 255693
849 163965
850 278427
851 382875
852 53763
853 18885
854 169407
855 157251
856 87495
857 88095
858 63135
859 555039
860 629997
861 37359
862 798315
863 93765
864 722967
865 31575
866 1744257*
867 60681
868 483735
869 399591
870 167967
871 1767711*
872 111027
873 55209
874 75783
875 50565
876 272085
877 31005
878 296043
879 622671
880 4107
881 134511
882 17145
883 430389
884 25833
885 1097925
886 87465
887 895101
888 45675
889 59421
890 910923
891 149091
892 115845
893 248349
894 173283
895 133875
896 11925
897 498981
898 59925
899 68901
900 105177
901 109305
902 1039227
903 23901
904 141615
905 344949
906 24747
907 248781
908 88407
909 179091
910 107457
911 551979
912 313485
913 127689
914 5673
915 136881
916 106413
917 233349
918 163377
919 280929
920 367023
921 94629
922 10533
923 382035
924 773367
925 50595
926 143403
927 80139
928 79623
929 83271
930 424167
931 2035431*
932 116385
933 94335
934 41727
935 390099
936 52953
937 164829
938 165537
939 369381
940 5955
941 202335
942 112053
943 317955
944 164787
945 60729
946 170085
947 27825
948 61425
949 23805
950 13503
951 385695
952 178173
953 21741
954 45243
955 351765
956 232947
957 77805
958 66417
959 399105
960 770193
961 98061
962 312297
963 1170699
964 177255
965 7995
966 82995
967 703701
968 514437
969 77565
970 113745
971 1390269
972 493173
973 16011
974 192255
975 947859
976 68313
977 230439
978 582717
979 262575
980 441357
981 402141
982 626943
983 10485
984 163497
985 411081
986 706773
987 1305255
988 97323
989 349521
990 417375
991 234291
992 56685
993 179445
994 24963
995 219069
996 237675
997 400941
998 330075
999 586899
1000 467343

[/code]

kar_bon 2008-02-22 10:03

[QUOTE=robert44444uk;126329]Here is a table of lowest k for each twin to n=1000

Does anyone want to take further?

* denotes jumping champion

[/QUOTE]

hi robert,
i hope you spent not much time in that!
please have a look here: [url]http://www.rieselprime.org/FirstKTwin.htm[/url].

i made this page 4 months ago after i found a link on this first twin for a k (see page).
all n upto 1130 are filled in there and with gaps upto 1400.
i want to expand this page but found no time yet!
karsten

robert44444uk 2008-02-24 12:37

[QUOTE=kar_bon;126450]hi robert,
i hope you spent not much time in that!
please have a look here: [url]http://www.rieselprime.org/FirstKTwin.htm[/url].

i made this page 4 months ago after i found a link on this first twin for a k (see page).
all n upto 1130 are filled in there and with gaps upto 1400.
i want to expand this page but found no time yet!
karsten[/QUOTE]

No only spent about an hour or so fiddling about.

I think it is an interesting exercise because of the statistics of series like this. If you plot all the values then it increases gently and there is a nice curve bounding 95% of values, but the outer envelope of the rogue 5% seem to be increasing on a much steeper curve.

I have a hunch that you could look at really rather a large set of consecutive n's then you would be certain to find a twin prime over a relatively small k range, and that would be more efficient that the current k*2^333333+/-1 twin search, as 333333 might be just such a rogue!!

Statisticians could I think define such a range of manageable k and n to produce 99% probability of getting a twin. Whereas n=333333 - who knows!

gd_barnes 2008-02-26 02:55

[quote=robert44444uk;126813]No only spent about an hour or so fiddling about.

I think it is an interesting exercise because of the statistics of series like this. If you plot all the values then it increases gently and there is a nice curve bounding 95% of values, but the outer envelope of the rogue 5% seem to be increasing on a much steeper curve.

I have a hunch that you could look at really rather a large set of consecutive n's then you would be certain to find a twin prime over a relatively small k range, and that would be more efficient that the current k*2^333333+/-1 twin search, as 333333 might be just such a rogue!!

Statisticians could I think define such a range of manageable k and n to produce 99% probability of getting a twin. Whereas n=333333 - who knows![/quote]


I agree completely Robert. I suggested this to MooMoo, the TPS project leader, in an Email several weeks ago. I didn't hear anything back. I think they've already decided that they'll do a fixed-n search on n=500K after they find a twin for n=333333.

IMHO, searching a moderate-sized range of consecutive n over a much smaller range of k-values is more effecient in the long run due to the LLRing efficiency gained from the smaller k-values.

In theory, the chances are the same either way of accidently searching a bad range. The TPS way, it's a 'rogue' n-value. Using the way I did it, you'd have the same number of candidates with more n-values but less k-values but still the same chance of catching a rogue k/n range. But the reason why I think it is more efficient is because smaller k's LLR so much faster. Even though you lose sieving depth and efficiency, LLRing is a large percentage of any prime search so more effort should be given towards minimizing LLR time instead of sieve time.

To get to where I've searched so far on my effort, it's only taken a few months of 2 pretty slow older 2.66 Ghz P4's. If I put 10-12 faster CPU's on it, I could most likely search n=36K-100K faster than I did just getting to n=36K.


Gary

robert44444uk 2008-03-02 07:05

A simple exercise to prove the above.

Take the first instance k for the first 1,000 n, shown in the table posted above on 21 February.

Take all combinations of 15 consecutive n, and calulate the average of the k values chosen (=A), and the minimum k in the range. Multiply the minimum by 15 (=B), and compare to the average.

A is smaller than B in 197 cases, but B is smaller than A in 788 cases. The broader the range so the number of cases that B<A increases:

range of n A/B B<A as % of total cases
10 371/619 62.5%
15 197/788 80.0%
20 109/871 88.9%
25 74/901 92.4%
30 54/916 94.4%

So I really do not understand the 333333 search!!!!

gd_barnes 2008-03-06 04:53

[quote=robert44444uk;126329]Here is a table of lowest k for each twin to n=1000

Does anyone want to take further?

* denotes jumping champion

[code]

1 3*
2 1
3 9*
4 15*
5 81*
6 3
7 9
8 57
9 45
10 15
11 99*
12 165*
13 369*
14 45
15 345
16 117
17 381*
18 3
19 69
20 447*
21 81
22 33
23 1179*
24 243
25 765
26 375
27 81
28 387
29 45
30 345
31 681
32 585
33 375
34 267
35 741
36 213
37 429
38 3093*
39 165
40 267
41 255
42 1095
43 9
44 147
45 849
46 405
47 1491
48 177
49 1941
50 927
51 1125
52 1197
53 2001
54 333
55 519
56 1065
57 585
58 657
59 129
60 147
61 141
62 417
63 9
64 1623
65 99
66 2985
67 2469
68 4497*
69 5259*
70 597
71 7029*
72 315
73 3081
74 2457
75 4161
76 603
77 3591
78 2697
79 3681
80 213
81 2079
82 1545
83 4089
84 165
85 1455
86 10287*
87 1629
88 387
89 3321
90 14487*
91 849
92 1467
93 3339
94 3747
95 6639
96 7737
97 8265
98 15735*
99 5589
100 4107
101 9225
102 537
103 2079
104 1203
105 1515
106 1323
107 7245
108 6897
109 20631*
110 2205
111 2175
112 3087
113 11145
114 7887
115 14841
116 2673
117 5961
118 3303
119 5565
120 3957
121 9849
122 1497
123 1125
124 1983
125 699
126 2565
127 8721
128 4467
129 5835
130 6063
131 1089
132 3117
133 1455
134 3105
135 6129
136 22365*
137 3555
138 24453*
139 8121
140 4143
141 1179
142 6903
143 309
144 11505
145 14121
146 17037
147 1419
148 17157
149 5715
150 345
151 13179
152 4497
153 3741
154 10803
155 105
156 30657*
157 14439
158 14445
159 7569
160 17295
161 25425
162 6555
163 2121
164 3717
165 13731
166 7737
167 18711
168 765
169 1881
170 19335
171 32361*
172 2847
173 2115
174 4155
175 1941
176 1383
177 24771
178 2277
179 10479
180 4287
181 441
182 19617
183 27261
184 2493
185 5481
186 28227
187 20175
188 1935
189 45
190 525
191 13719
192 8337
193 12495
194 18087
195 27099
196 9753
197 56745*
198 4245
199 8265
200 63855*
201 27261
202 69855*
203 14199
204 1755
205 5529
206 1197
207 54639
208 69753
209 10461
210 10575
211 9
212 3615
213 26145
214 9225
215 5859
216 12255
217 6615
218 16653
219 18531
220 24087
221 6555
222 7947
223 12909
224 49203
225 49341
226 10857
227 3405
228 25665
229 19041
230 21255
231 2571
232 30015
233 47079
234 24915
235 77751*
236 33333
237 16641
238 135
239 17289
240 10197
241 4059
242 1023
243 50319
244 22113
245 9915
246 17535
247 19041
248 15795
249 168831*
250 23007
251 5139
252 17787
253 15519
254 12957
255 1215
256 64647
257 9951
258 74253
259 2805
260 2475
261 15711
262 25767
263 9789
264 165
265 13209
266 19593
267 33105
268 45213
269 969
270 98907
271 19335
272 22317
273 10635
274 13713
275 34245
276 41085
277 24129
278 26025
279 24579
280 128505
281 3381
282 165
283 20175
284 23853
285 25881
286 61647
287 39315
288 2667
289 67695
290 34647
291 1899
292 33735
293 48861
294 2373
295 58179
296 66507
297 9609
298 20085
299 6405
300 230085*
301 44529
302 16575
303 22815
304 99297
305 21015
306 21075
307 91455
308 9993
309 15069
310 9543
311 79719
312 36195
313 14649
314 7605
315 67461
316 16035
317 12951
318 20295
319 41349
320 82473
321 20781
322 19293
323 88791
324 55605
325 23295
326 25473
327 10071
328 28653
329 48489
330 12477
331 7791
332 345675*
333 669
334 16437
335 42699
336 93765
337 12909
338 5253
339 23415
340 128625
341 21585
342 76995
343 153645
344 573
345 31719
346 15717
347 43011
348 33765
349 28149
350 71253
351 127305
352 14727
353 85431
354 10545
355 7785
356 38853
357 70851
358 65385
359 9129
360 162243
361 5049
362 49815
363 26871
364 210447
365 9369
366 74763
367 18669
368 16905
369 49299
370 12543
371 3321
372 138765
373 151839
374 40257
375 26679
376 14223
377 23709
378 22713
379 66039
380 1023
381 67749
382 34683
383 114951
384 126747
385 72609
386 114687
387 1701
388 56817
389 10791
390 39345
391 615
392 108195
393 95151
394 67023
395 21315
396 28065
397 24039
398 19065
399 102795
400 48207
401 28941
402 83337
403 101535
404 22887
405 74085
406 35253
407 79215
408 31635
409 36825
410 50835
411 273429
412 58065
413 86061
414 39513
415 17061
416 32025
417 30705
418 1743
419 71919
420 224415
421 66075
422 84057
423 81651
424 65337
425 237765
426 251475
427 83139
428 36903
429 39039
430 110157
431 66219
432 69477
433 50181
434 54033
435 5415
436 30987
437 102309
438 24693
439 56259
440 25077
441 15255
442 18795
443 3921
444 35793
445 9345
446 18663
447 30849
448 57717
449 69285
450 155463
451 26355
452 258345
453 17631
454 65193
455 2085
456 9063
457 15561
458 4323
459 104661
460 34725
461 92235
462 229227
463 53991
464 63903
465 24351
466 12147
467 33351
468 2565
469 108795
470 5547
471 139935
472 8787
473 184281
474 49053
475 13935
476 33375
477 33315
478 141315
479 53019
480 162897
481 233115
482 143163
483 150939
484 50295
485 27975
486 101055
487 156051
488 7503
489 73671
490 37095
491 37719
492 1995
493 97449
494 39207
495 27261
496 208845
497 99015
498 37755
499 131439
500 52305
501 207945
502 35397
503 66735
504 35877
505 74985
506 103107
507 5565
508 216243
509 107631
510 262035
511 43485
512 51765
513 134115
514 53355
515 87951
516 12045
517 66375
518 366555*
519 83211
520 4257
521 17709
522 80175
523 76089
524 47403
525 5775
526 62337
527 43371
528 43137
529 10365
530 74367
531 104409
532 347457
533 396441*
534 84627
535 278535
536 49893
537 23541
538 2007
539 12711
540 174297
541 8031
542 121065
543 40119
544 330015
545 18801
546 297
547 5979
548 97293
549 157209
550 26853
551 4035
552 29187
553 190485
554 70923
555 67329
556 130227
557 105381
558 80385
559 300561
560 39243
561 112581
562 176205
563 199989
564 117243
565 120069
566 75225
567 28131
568 239247
569 60411
570 25485
571 27909
572 20037
573 14259
574 70107
575 38835
576 247035
577 126615
578 136413
579 404871*
580 88257
581 76569
582 22587
583 28005
584 15177
585 210051
586 83175
587 173355
588 50235
589 133911
590 42777
591 389799
592 86385
593 45315
594 179163
595 257529
596 41625
597 268461
598 147135
599 74229
600 82023
601 135585
602 190695
603 33885
604 113475
605 264849
606 129705
607 368775
608 217143
609 228651
610 86973
611 8781
612 47313
613 94005
614 261075
615 34059
616 79353
617 29919
618 54015
619 18429
620 55203
621 46035
622 87795
623 12285
624 143265
625 104091
626 16323
627 140739
628 137907
629 223569
630 643737*
631 229749
632 506475
633 123891
634 242523
635 52419
636 78033
637 137835
638 227283
639 198459
640 558087
641 664941*
642 394203
643 91629
644 84045
645 274395
646 250923
647 24249
648 78453
649 109809
650 3723
651 205251
652 375843
653 624165
654 61353
655 38835
656 256605
657 21999
658 75447
659 101661
660 50943
661 77505
662 32067
663 374901
664 567573
665 258651
666 249345
667 127041
668 144717
669 58725
670 392013
671 130689
672 15993
673 178689
674 252693
675 376929
676 257613
677 3405
678 169893
679 469755
680 7605
681 217221
682 386127
683 151845
684 24537
685 243879
686 141705
687 246405
688 224625
689 13689
690 46545
691 38229
692 47937
693 152421
694 13197
695 2985
696 96813
697 102789
698 157587
699 436095
700 179865
701 317481
702 169827
703 5355
704 253995
705 330171
706 312387
707 37149
708 270177
709 158115
710 60693
711 25029
712 700005*
713 92529
714 35817
715 629211
716 118413
717 78561
718 86193
719 101361
720 89577
721 119721
722 150567
723 715449*
724 102213
725 20115
726 213
727 35589
728 30933
729 343359
730 308853
731 111285
732 142047
733 597339
734 50025
735 123585
736 5013
737 11175
738 95937
739 140481
740 51975
741 170625
742 58683
743 48075
744 9753
745 9165
746 131937
747 113271
748 42777
749 227871
750 22407
751 1025925
752 140967
753 110775
754 797433*
755 490281
756 490107
757 125169
758 84057
759 133521
760 404775
761 913671*
762 48615
763 242445
764 141243
765 73059
766 988437*
767 315
768 65475
769 484455
770 354417
771 56199
772 743433
773 62391
774 173667
775 125385
776 26775
777 188979
778 410187
779 239271
780 51777
781 88299
782 406707
783 108351
784 364203
785 193515
786 58257
787 17481
788 20997
789 19485
790 116103
791 217809
792 488805
793 98649
794 18495
795 119259
796 212157
797 526701
798 679623
799 95565
800 207663
801 291951
802 353127
803 267795
804 442227
805 72861
806 613383
807 136119
808 142785
809 47055
810 539157
811 70539
812 191085
813 10125
814 105537
815 234315
816 385887
817 64401
818 789453
819 377451
820 125385
821 49041
822 640677
823 268101
824 66975
825 134481
826 515955
827 12285
828 78375
829 1365
830 554925
831 24609
832 524217
833 49539
834 130323
835 155085
836 1175493*
837 62361
838 127905
839 238395
840 916815
841 86679
842 129237
843 122685
844 87303
845 451209
846 61785
847 5265
848 255693
849 163965
850 278427
851 382875
852 53763
853 18885
854 169407
855 157251
856 87495
857 88095
858 63135
859 555039
860 629997
861 37359
862 798315
863 93765
864 722967
865 31575
866 1744257*
867 60681
868 483735
869 399591
870 167967
871 1767711*
872 111027
873 55209
874 75783
875 50565
876 272085
877 31005
878 296043
879 622671
880 4107
881 134511
882 17145
883 430389
884 25833
885 1097925
886 87465
887 895101
888 45675
889 59421
890 910923
891 149091
892 115845
893 248349
894 173283
895 133875
896 11925
897 498981
898 59925
899 68901
900 105177
901 109305
902 1039227
903 23901
904 141615
905 344949
906 24747
907 248781
908 88407
909 179091
910 107457
911 551979
912 313485
913 127689
914 5673
915 136881
916 106413
917 233349
918 163377
919 280929
920 367023
921 94629
922 10533
923 382035
924 773367
925 50595
926 143403
927 80139
928 79623
929 83271
930 424167
931 2035431*
932 116385
933 94335
934 41727
935 390099
936 52953
937 164829
938 165537
939 369381
940 5955
941 202335
942 112053
943 317955
944 164787
945 60729
946 170085
947 27825
948 61425
949 23805
950 13503
951 385695
952 178173
953 21741
954 45243
955 351765
956 232947
957 77805
958 66417
959 399105
960 770193
961 98061
962 312297
963 1170699
964 177255
965 7995
966 82995
967 703701
968 514437
969 77565
970 113745
971 1390269
972 493173
973 16011
974 192255
975 947859
976 68313
977 230439
978 582717
979 262575
980 441357
981 402141
982 626943
983 10485
984 163497
985 411081
986 706773
987 1305255
988 97323
989 349521
990 417375
991 234291
992 56685
993 179445
994 24963
995 219069
996 237675
997 400941
998 330075
999 586899
1000 467343

[/code][/quote]


The value of n=1 should be k=2 instead of k=3, i.e.:
2*2^1-1=3 and 2*2^1+1=5.

Trivial result...the only twin prime for an even k, as shown on my web page.


Gary

robert44444uk 2008-03-07 06:13

Gary/ Karsten

Decided to take a break from Very Prime Series and give a hand here. I have two machines (albeit with no CPU power) working on first instance (k) primes up to n=3000.

Results of first instance primes to 1400 show a rather nice curve when plotting ln(k/n) against n. Best fit looks to be logarithmic as well. Would be interested to know if this might be a good way to target large twins. For example, [U]if[/U] the extrapolation of the best fit to n=333333, gave A= ln(k/n)= 9, then the first twin would be, on average, at k=2.70103*10^9 then the test might look at n from 333333 to n 333433, say at A=8.999 to 9.001 or k=2.69833*10^9 to 2.70373*10^9. A 50 million k range, sieved to 1T would provide about 4,000 candidates for prime checking or 400,000 overall for a 100 k range.


Mind you I am not sure A= 9 is right for n=333333. But maybe someone could extrapolate and work out the odds of finding a twin in the suggested k/n matrix.

Also the plot of ln(ln(k/n)) looks as if it heading to a value of 2 with over 87% of values between 1.5 and 2 for n from 1 to 1383, and 92% from n=1 to 1383.

robert44444uk 2008-03-07 11:24

Oooer,

Think I am a long way out on my forecast for n=333333, but maybe mathematicians can come to the rescue!!

robert44444uk 2008-03-08 13:19

Here are the results for 1000 to 2000, with asterisked jumping champions:

[CODE]

1001 282285
1002 1028307
1003 140691
1004 519915
1005 370605
1006 176877
1007 37275
1008 48225
1009 551679
1010 258483
1011 895221
1012 334137
1013 74091
1014 35523
1015 424125
1016 314217
1017 320931
1018 19887
1019 122595
1020 313023
1021 341871
1022 292215
1023 622485
1024 254697
1025 258621
1026 155925
1027 711885
1028 98493
1029 938931
1030 416883
1031 461889
1032 177
1033 364365
1034 16233
1035 130869
1036 328497
1037 71421
1038 145035
1039 249429
1040 356433
1041 200655
1042 255807
1043 373965
1044 1391775
1045 94065
1046 124743
1047 109809
1048 3885
1049 217365
1050 312147
1051 437955
1052 85845
1053 212265
1054 461175
1055 91755
1056 88515
1057 33405
1058 620595
1059 60099
1060 265593
1061 1063875
1062 126963
1063 122325
1064 243183
1065 290955
1066 90165
1067 85911
1068 193443
1069 132525
1070 70623
1071 2092731*
1072 142443
1073 291231
1074 371997
1075 13131
1076 50025
1077 181521
1078 419145
1079 143781
1080 193347
1081 427611
1082 533187
1083 818961
1084 15315
1085 156615
1086 69417
1087 161289
1088 117225
1089 121719
1090 393687
1091 773475
1092 147417
1093 651939
1094 188793
1095 803589
1096 701433
1097 116805
1098 58287
1099 342189
1100 355065
1101 384981
1102 27435
1103 170115
1104 4275
1105 738375
1106 300135
1107 48681
1108 413103
1109 3525165*
1110 11007
1111 2439999
1112 111765
1113 196455
1114 843003
1115 1041429
1116 175803
1117 819225
1118 528783
1119 155445
1120 121365
1121 465891
1122 60513
1123 831105
1124 1504797
1125 148935
1126 1098363
1127 152835
1128 224973
1129 508131
1130 580923
1131 518091
1132 850785
1133 142125
1134 83205
1135 618735
1136 317793
1137 221979
1138 798135
1139 168195
1140 282873
1141 269745
1142 11007
1143 1057989
1144 162177
1145 1037355
1146 184923
1147 251175
1148 1398117
1149 487785
1150 232755
1151 1617651
1152 336315
1153 827451
1154 729543
1155 256491
1156 1035
1157 312651
1158 1120767
1159 1108365
1160 167013
1161 723411
1162 341427
1163 811269
1164 228093
1165 798891
1166 258117
1167 54339
1168 62823
1169 353679
1170 1053327
1171 300585
1172 1524225
1173 52461
1174 1078677
1175 46791
1176 147063
1177 964179
1178 337287
1179 613029
1180 830835
1181 261855
1182 656877
1183 924855
1184 396843
1185 1647891
1186 320223
1187 1173099
1188 65613
1189 955089
1190 154605
1191 1066371
1192 625365
1193 84435
1194 176085
1195 175785
1196 324915
1197 45201
1198 185157
1199 268191
1200 724545
1201 544929
1202 1055583
1203 2016501
1204 121275
1205 356415
1206 273957
1207 869541
1208 990165
1209 537369
1210 463983
1211 994269
1212 666495
1213 1280439
1214 2475495
1215 364455
1216 130803
1217 14199
1218 1267887
1219 188589
1220 825105
1221 88329
1222 1023483
1223 542151
1224 775365
1225 652335
1226 1653435
1227 662799
1228 79203
1229 42399
1230 3452103
1231 753849
1232 988593
1233 389895
1234 513813
1235 1115085
1236 1392603
1237 74109
1238 252753
1239 3267021
1240 334293
1241 13629
1242 298797
1243 529719
1244 64233
1245 88575
1246 621147
1247 3058299
1248 129315
1249 243819
1250 597465
1251 75705
1252 206655
1253 515679
1254 2396175
1255 763701
1256 53865
1257 187521
1258 635025
1259 484341
1260 147387
1261 32265
1262 2045985
1263 979605
1264 467595
1265 533805
1266 774807
1267 95229
1268 817797
1269 802431
1270 71805
1271 682881
1272 50655
1273 235845
1274 95847
1275 456549
1276 475515
1277 613971
1278 388005
1279 152091
1280 1318815
1281 2160741
1282 99105
1283 3124995
1284 426657
1285 322041
1286 9183
1287 5629461*
1288 1793223
1289 808101
1290 230085
1291 114105
1292 1462605
1293 186921
1294 341367
1295 49119
1296 1186755
1297 764001
1298 248163
1299 3339
1300 264915
1301 275619
1302 734325
1303 633381
1304 205503
1305 190881
1306 499917
1307 163731
1308 1501665
1309 270075
1310 384993
1311 1033569
1312 15657
1313 571581
1314 46965
1315 471795
1316 580623
1317 1627791
1318 438075
1319 304065
1320 1733043
1321 1065
1322 230223
1323 1033569
1324 969387
1325 62265
1326 996987
1327 2625
1328 1553745
1329 1281075
1330 754215
1331 3307209
1332 209853
1333 132225
1334 1143255
1335 480165
1336 1199463
1337 560391
1338 92115
1339 142185
1340 1857213
1341 422385
1342 1224117
1343 117975
1344 1280295
1345 351015
1346 853875
1347 582729
1348 1252053
1349 919881
1350 245325
1351 878415
1352 1236897
1353 263571
1354 38565
1355 62289
1356 998823
1357 158355
1358 1416285
1359 313551
1360 456645
1361 268485
1362 158043
1363 998205
1364 471537
1365 365691
1366 769293
1367 7755
1368 682743
1369 249285
1370 290133
1371 518529
1372 395787
1373 188475
1374 1108203
1375 125601
1376 147777
1377 1157415
1378 2088045
1379 570699
1380 1462017
1381 856821
1382 941577
1383 67821
1384 751497
1385 106449
1386 708885
1387 175905
1388 107205
1389 97899
1390 14877
1391 76479
1392 1984383
1393 370749
1394 88155
1395 870741
1396 1342773
1397 542805
1398 658935
1399 1186401
1400 797373
1401 878385
1402 80103
1403 1414851
1404 761427
1405 891891
1406 18003
1407 2122659
1408 98475
1409 174009
1410 939915
1411 173229
1412 2561475
1413 1041609
1414 893937
1415 207519
1416 726975
1417 2445081
1418 285153
1419 689589
1420 1655163
1421 203949
1422 797955
1423 1522551
1424 136065
1425 86205
1426 232365
1427 1946031
1428 2266035
1429 170379
1430 438645
1431 75519
1432 379317
1433 297591
1434 1132857
1435 2376429
1436 961797
1437 1592955
1438 686343
1439 1993755
1440 10083
1441 74031
1442 702927
1443 613095
1444 316275
1445 1140285
1446 93837
1447 51651
1448 518787
1449 575949
1450 650757
1451 769209
1452 1122567
1453 632541
1454 442635
1455 849261
1456 3351873
1457 515535
1458 611433
1459 113931
1460 1605915
1461 141099
1462 15927
1463 1233519
1464 455445
1465 114681
1466 74505
1467 1252569
1468 85077
1469 571071
1470 273765
1471 81489
1472 131025
1473 330201
1474 1524045
1475 66381
1476 751005
1477 129645
1478 1114995
1479 385971
1480 677613
1481 3420999
1482 1436103
1483 57891
1484 167745
1485 377349
1486 704373
1487 1912131
1488 524727
1489 1231161
1490 3160707
1491 338649
1492 1267167
1493 1246179
1494 471945
1495 187509
1496 521073
1497 1408449
1498 2480883
1499 306939
1500 32547
1501 1778709
1502 652323
1503 2676891
1504 1424085
1505 1327329
1506 910305
1507 323895
1508 132093
1509 86361
1510 2608005
1511 1934409
1512 858315
1513 577179
1514 1200675
1515 3154659
1516 303345
1517 2700279
1518 1270677
1519 937071
1520 3027615
1521 381699
1522 5690025*
1523 133725
1524 187155
1525 1759851
1526 302415
1527 362619
1528 465015
1529 1916355
1530 137427
1531 519765
1532 83973
1533 36045
1534 2798223
1535 263505
1536 1682853
1537 587505
1538 1581567
1539 568809
1540 369837
1541 1562889
1542 318075
1543 442191
1544 606537
1545 135831
1546 657417
1547 286581
1548 583275
1549 3521211
1550 427143
1551 447711
1552 297627
1553 291
1554 1979757
1555 1585425
1556 81255
1557 349395
1558 924657
1559 2046261
1560 108885
1561 1726149
1562 201645
1563 2062539
1564 1439853
1565 882459
1566 42507
1567 601515
1568 1326975
1569 1108371
1570 935943
1571 822555
1572 715995
1573 324129
1574 424617
1575 620055
1576 246045
1577 586755
1578 118893
1579 238509
1580 4894863
1581 763935
1582 285423
1583 682179
1584 849357
1585 339621
1586 566475
1587 1013535
1588 142197
1589 1483749
1590 118773
1591 1408785
1592 1439703
1593 239745
1594 360513
1595 303939
1596 1277775
1597 1704015
1598 937233
1599 15375
1600 2037615
1601 128619
1602 2329245
1603 89895
1604 4199007
1605 1274121
1606 923853
1607 3542361
1608 992037
1609 390621
1610 222783
1611 2597511
1612 3516297
1613 417711
1614 219693
1615 876975
1616 78327
1617 799335
1618 605283
1619 133155
1620 2564265
1621 942615
1622 1283757
1623 33549
1624 832413
1625 65835
1626 501447
1627 1149735
1628 1153323
1629 2937105
1630 166173
1631 2852121
1632 1530903
1633 202551
1634 216573
1635 1623171
1636 264327
1637 4553769
1638 213897
1639 517215
1640 34215
1641 164271
1642 620433
1643 3030975
1644 1387347
1645 2923179
1646 1206135
1647 183855
1648 160587
1649 269541
1650 1873503
1651 884751
1652 33957
1653 323031
1654 682113
1655 876849
1656 1595433
1657 566445
1658 3824937
1659 1813611
1660 20733
1661 589281
1662 260757
1663 1216815
1664 1183377
1665 885909
1666 3120063
1667 2131941
1668 1262193
1669 1022901
1670 960075
1671 552771
1672 56685
1673 1112175
1674 1859853
1675 917541
1676 96897
1677 24969
1678 34725
1679 520719
1680 832947
1681 602331
1682 292407
1683 1367541
1684 3336843
1685 239715
1686 2610675
1687 228111
1688 153513
1689 27765
1690 674133
1691 598875
1692 1520523
1693 747711
1694 401055
1695 570831
1696 592563
1697 1189089
1698 1627455
1699 285861
1700 241455
1701 2189229
1702 5434023
1703 1377975
1704 151827
1705 312405
1706 1362567
1707 1403001
1708 270633
1709 497991
1710 3470667
1711 1458675
1712 635163
1713 213201
1714 1036635
1715 4239039
1716 5862777*
1717 1717869
1718 51747
1719 386061
1720 3976863
1721 45951
1722 1887375
1723 650859
1724 379323
1725 787395
1726 435345
1727 1444089
1728 1652577
1729 174915
1730 3604917
1731 970335
1732 1796067
1733 840315
1734 2362815
1735 1639251
1736 679977
1737 620571
1738 2231685
1739 595581
1740 377787
1741 872055
1742 1824297
1743 967425
1744 1424145
1745 260289
1746 2503953
1747 2776215
1748 645327
1749 2970279
1750 274323
1751 373185
1752 1260717
1753 3720729
1754 1073577
1755 2880981
1756 2120643
1757 41229
1758 1585017
1759 300351
1760 3314793
1761 289095
1762 402687
1763 29481
1764 984987
1765 426105
1766 447465
1767 84159
1768 1820583
1769 285009
1770 1596045
1771 691419
1772 333663
1773 2318871
1774 3654177
1775 1090125
1776 595053
1777 358875
1778 602337
1779 842529
1780 2161035
1781 2065071
1782 219495
1783 851709
1784 2669145
1785 243399
1786 42825
1787 1118181
1788 2421057
1789 428631
1790 383313
1791 113025
1792 1904805
1793 95151
1794 98583
1795 453741
1796 2079255
1797 2800941
1798 1172337
1799 2568609
1800 732567
1801 4073949
1802 3368655
1803 2079045
1804 1003533
1805 674505
1806 1206513
1807 474249
1808 211527
1809 2702121
1810 381687
1811 1009869
1812 994107
1813 948789
1814 153537
1815 2490609
1816 119217
1817 1262079
1818 2999217
1819 5680095
1820 79335
1821 208101
1822 2517873
1823 57495
1824 1047153
1825 2028459
1826 943863
1827 943941
1828 5392107
1829 3421551
1830 2098275
1831 1688079
1832 1186437
1833 4735311
1834 529983
1835 535395
1836 1230183
1837 1388661
1838 434085
1839 584829
1840 2480025
1841 525759
1842 560313
1843 734361
1844 2615235
1845 4198689
1846 1177785
1847 1019379
1848 674847
1849 87585
1850 4155033
1851 317649
1852 626703
1853 4020069
1854 699963
1855 203211
1856 2185443
1857 3799731
1858 29835
1859 1685445
1860 13317
1861 331731
1862 843273
1863 4007301
1864 166353
1865 508911
1866 2739747
1867 475719
1868 1142103
1869 82275
1870 311067
1871 1838235
1872 845973
1873 569451
1874 226293
1875 1002141
1876 3964035
1877 2332491
1878 1327095
1879 1345965
1880 22035
1881 354189
1882 1104123
1883 919335
1884 563217
1885 191505
1886 531717
1887 2096265
1888 800457
1889 3173061
1890 3049323
1891 922749
1892 2294307
1893 849849
1894 249417
1895 417045
1896 4020993
1897 413271
1898 675255
1899 1567515
1900 4425
1901 441531
1902 1436775
1903 435609
1904 3037815
1905 520215
1906 328557
1907 589455
1908 1018797
1909 459291
1910 1456293
1911 4789059
1912 4947147
1913 426615
1914 2018727
1915 2202885
1916 558183
1917 1542735
1918 1434207
1919 164835
1920 588453
1921 1274835
1922 362613
1923 228525
1924 935265
1925 1019949
1926 891273
1927 826575
1928 1216137
1929 1132989
1930 426165
1931 1126005
1932 298965
1933 39171
1934 605973
1935 2497911
1936 101505
1937 485181
1938 2986623
1939 245481
1940 1342107
1941 2349669
1942 2730237
1943 819189
1944 335097
1945 704409
1946 4290147
1947 5837991
1948 1731387
1949 1217601
1950 1105407
1951 928965
1952 491337
1953 197139
1954 8007
1955 396669
1956 616893
1957 700569
1958 1550433
1959 1748631
1960 1373625
1961 2612919
1962 303147
1963 822435
1964 1738983
1965 3094341
1966 63237
1967 1843419
1968 1330095
1969 637341
1970 570597
1971 3885
1972 295503
1973 2244459
1974 3217737
1975 1017381
1976 2980953
1977 4103841
1978 1088085
1979 3564789
1980 3550827
1981 800109
1982 2046087
1983 182319
1984 429777
1985 31545
1986 880317
1987 3175779
1988 207213
1989 103239
1990 2965107
1991 2852079
1992 1963113
1993 1301685
1994 1780785
1995 1314885
1996 284655
1997 2378895
1998 377085
1999 3400089
2000 4605615


[/CODE]

kar_bon 2008-03-08 23:39

hey, great work robert!
i will include them here [url]www.rieselprime.org/FirstKTwin.htm[/url] when i got time!
thanks!

robert44444uk 2008-03-17 12:11

Here are first instance twins from n=2000 to n=3000. Now a good way towards n=4000

[code]
n first k
2001 133641
2002 649683
2003 2930049
2004 1427463
2005 411801
2006 595665
2007 1154619
2008 1100385
2009 934875
2010 667275
2011 954759
2012 606633
2013 2595345
2014 166845
2015 1190745
2016 1527327
2017 4675869
2018 720387
2019 2345859
2020 3118845
2021 2558685
2022 622365
2023 1517451
2024 10095
2025 3632955
2026 773193
2027 2129109
2028 2235525
2029 1885245
2030 111483
2031 1974135
2032 5717397
2033 1332465
2034 852807
2035 1580595
2036 1151973
2037 451959
2038 1018803
2039 181635
2040 615927
2041 3436125
2042 390345
2043 1551489
2044 395835
2045 2897031
2046 689187
2047 3666651
2048 442533
2049 2094795
2050 2451435
2051 243309
2052 260715
2053 1735629
2054 3096345
2055 1001985
2056 1874007
2057 784581
2058 4510305
2059 2444265
2060 329613
2061 357159
2062 7147317*
2063 1119579
2064 2763243
2065 825315
2066 4315755
2067 1284945
2068 1066533
2069 2132229
2070 1902303
2071 176829
2072 2144103
2073 606879
2074 687363
2075 1871289
2076 457005
2077 2539431
2078 1590315
2079 1473615
2080 1370817
2081 2558949
2082 2970705
2083 84609
2084 1662657
2085 2956539
2086 542673
2087 2364531
2088 2206503
2089 1019235
2090 3338835
2091 3359289
2092 1375155
2093 281415
2094 3084393
2095 2336349
2096 189837
2097 123165
2098 1733655
2099 3562065
2100 191823
2101 161511
2102 757173
2103 2760621
2104 1676493
2105 1231005
2106 423327
2107 1070481
2108 8173875*
2109 981171
2110 251235
2111 3498669
2112 59553
2113 661341
2114 3489753
2115 1983459
2116 269877
2117 1766541
2118 374757
2119 2165961
2120 969993
2121 368379
2122 966537
2123 3632469
2124 2199687
2125 927249
2126 1339323
2127 1189311
2128 373077
2129 11655
2130 1796025
2131 1320969
2132 387015
2133 3241005
2134 4231827
2135 403971
2136 794463
2137 358101
2138 40215
2139 808635
2140 1206507
2141 3789009
2142 2047887
2143 723555
2144 215307
2145 557925
2146 2486253
2147 623661
2148 647787
2149 878571
2150 959757
2151 4665759
2152 250977
2153 2285889
2154 4471203
2155 401025
2156 769737
2157 380499
2158 4913103
2159 477075
2160 5649675
2161 1045821
2162 33117
2163 2489541
2164 1547013
2165 1314579
2166 1123593
2167 6311811
2168 2865393
2169 408471
2170 1281513
2171 2061111
2172 467577
2173 2655471
2174 1231593
2175 3716169
2176 1172205
2177 3578565
2178 287103
2179 8715615*
2180 480777
2181 706431
2182 53955
2183 7423941
2184 1803315
2185 66729
2186 810897
2187 1295271
2188 2439885
2189 602595
2190 4485507
2191 4359
2192 1844283
2193 425031
2194 4654305
2195 179745
2196 24405
2197 4499175
2198 895257
2199 6930819
2200 4012377
2201 2984799
2202 903375
2203 1317555
2204 640707
2205 806271
2206 2327703
2207 603495
2208 2644593
2209 1214331
2210 1505997
2211 436515
2212 1612533
2213 6201
2214 1405647
2215 3203205
2216 3028725
2217 879501
2218 863343
2219 416721
2220 13939725*
2221 1566255
2222 3628233
2223 1892385
2224 3047007
2225 976011
2226 923205
2227 6554205
2228 2935587
2229 2972529
2230 2126025
2231 5493585
2232 3593625
2233 2826081
2234 509823
2235 3665961
2236 113685
2237 644385
2238 143427
2239 1264095
2240 2389677
2241 1436769
2242 2657433
2243 823179
2244 3927957
2245 963429
2246 141165
2247 908919
2248 1814997
2249 1636011
2250 1208235
2251 1513965
2252 3355227
2253 75219
2254 7286685
2255 7419
2256 488733
2257 109599
2258 402567
2259 2707365
2260 5754897
2261 538905
2262 2540235
2263 1268265
2264 334863
2265 1755045
2266 619695
2267 812025
2268 1441893
2269 4040391
2270 684123
2271 719925
2272 1486575
2273 378291
2274 1294263
2275 211365
2276 5279163
2277 255999
2278 43947
2279 2458665
2280 25293
2281 3015531
2282 1120767
2283 1025139
2284 11455353
2285 3492885
2286 3932037
2287 3226839
2288 3184605
2289 928329
2290 3743943
2291 1571535
2292 6518367
2293 117705
2294 4774575
2295 2711271
2296 2494323
2297 1601151
2298 965373
2299 1155231
2300 4387947
2301 261609
2302 3444303
2303 545955
2304 3792927
2305 533079
2306 4193055
2307 1764471
2308 848127
2309 2331879
2310 1491345
2311 257319
2312 723477
2313 5870889
2314 470625
2315 2635581
2316 1501227
2317 298599
2318 149955
2319 1017279
2320 1449825
2321 625821
2322 3600657
2323 2401035
2324 825027
2325 2895951
2326 1821477
2327 1671075
2328 143925
2329 1786041
2330 900645
2331 3034155
2332 3049125
2333 43089
2334 2249907
2335 554811
2336 7262457
2337 2613825
2338 1122063
2339 1208025
2340 131373
2341 3225699
2342 1730217
2343 4251891
2344 1293297
2345 4404261
2346 2074233
2347 3894099
2348 1607295
2349 256359
2350 4011873
2351 3974571
2352 2129943
2353 756471
2354 1179975
2355 5739951
2356 3090843
2357 3325329
2358 660993
2359 2272311
2360 2209227
2361 140319
2362 808935
2363 900021
2364 486087
2365 606621
2366 3500433
2367 988899
2368 1419837
2369 410799
2370 231915
2371 1438809
2372 2782503
2373 2746149
2374 420267
2375 403521
2376 194367
2377 2408769
2378 5432883
2379 317145
2380 459807
2381 1413381
2382 1804275
2383 1068699
2384 1526997
2385 2721639
2386 1397865
2387 604989
2388 2572503
2389 699531
2390 1073703
2391 820761
2392 936465
2393 5188569
2394 554055
2395 6620265
2396 1045113
2397 451845
2398 540057
2399 3925809
2400 12123027
2401 753489
2402 2858337
2403 9618801
2404 2873163
2405 687099
2406 6860187
2407 859329
2408 162183
2409 942441
2410 913425
2411 2101551
2412 2205837
2413 591579
2414 684813
2415 650709
2416 708897
2417 4326885
2418 2249355
2419 6996435
2420 399027
2421 1501815
2422 5330073
2423 617295
2424 351237
2425 2331489
2426 1700745
2427 2249355
2428 1426815
2429 379401
2430 3521445
2431 2713935
2432 10912485
2433 3965685
2434 11808915
2435 740181
2436 4112013
2437 1503909
2438 11136945
2439 1511241
2440 1282917
2441 379005
2442 3267045
2443 1231011
2444 1565493
2445 2883729
2446 6014253
2447 1715181
2448 5903835
2449 6606249
2450 1273023
2451 10357665
2452 175245
2453 6871845
2454 3140505
2455 11621685
2456 484047
2457 708795
2458 778317
2459 1261359
2460 331545
2461 2476005
2462 2178705
2463 1972995
2464 4438875
2465 2459565
2466 7927227
2467 1052541
2468 2009427
2469 605901
2470 60957
2471 1469061
2472 1557105
2473 52935
2474 271947
2475 3044661
2476 572223
2477 4678059
2478 2677083
2479 845949
2480 2485287
2481 639159
2482 1859067
2483 4125519
2484 1958313
2485 775749
2486 568767
2487 150111
2488 1874823
2489 804801
2490 4571175
2491 1925415
2492 1934517
2493 1275999
2494 1869555
2495 398385
2496 7484367
2497 766611
2498 56727
2499 1694595
2500 575745
2501 86085
2502 416007
2503 3248349
2504 1706667
2505 562809
2506 244407
2507 1906821
2508 2473527
2509 3935829
2510 1539285
2511 2696031
2512 705795
2513 1694475
2514 3419607
2515 812355
2516 343395
2517 6644109
2518 94815
2519 1857729
2520 4990947
2521 1296699
2522 245895
2523 878481
2524 4332453
2525 2165169
2526 1427127
2527 3986631
2528 6039603
2529 33939
2530 1311975
2531 9119961
2532 2946213
2533 1834041
2534 1990185
2535 207939
2536 2664915
2537 3206295
2538 731673
2539 2443209
2540 2645943
2541 454989
2542 1231077
2543 3092235
2544 5280615
2545 1466271
2546 3537933
2547 4499871
2548 258417
2549 1182471
2550 4024653
2551 1694625
2552 4992807
2553 1204719
2554 106455
2555 4458441
2556 2796033
2557 1669449
2558 2196375
2559 4229589
2560 100995
2561 2443431
2562 260295
2563 903861
2564 3509157
2565 621045
2566 1949103
2567 114201
2568 1097505
2569 79029
2570 780807
2571 886329
2572 712215
2573 4769349
2574 475863
2575 704649
2576 416937
2577 2264481
2578 1247493
2579 1081539
2580 590517
2581 2458455
2582 181287
2583 5741505
2584 3556737
2585 2617089
2586 348873
2587 4053015
2588 1299693
2589 8371671
2590 1045233
2591 372849
2592 2753643
2593 1696365
2594 1162773
2595 671781
2596 6094713
2597 183039
2598 3030753
2599 236049
2600 5675475
2601 2153811
2602 190815
2603 3151935
2604 1817643
2605 1666821
2606 12924117
2607 4004469
2608 2879193
2609 139989
2610 426045
2611 662241
2612 934683
2613 1333929
2614 5152947
2615 2439525
2616 4649697
2617 3453555
2618 5695893
2619 2897379
2620 193845
2621 4290441
2622 1154877
2623 5846175
2624 2032425
2625 1030431
2626 736773
2627 377685
2628 577365
2629 1129701
2630 1323357
2631 3091221
2632 589335
2633 410001
2634 166605
2635 1122171
2636 595365
2637 89115
2638 5478003
2639 3811335
2640 985215
2641 2310279
2642 2835045
2643 4563471
2644 573627
2645 4521171
2646 1888575
2647 1511181
2648 2547693
2649 4619499
2650 3437817
2651 1015815
2652 1216857
2653 1221885
2654 7059063
2655 2516745
2656 2727627
2657 5563359
2658 3372297
2659 1835409
2660 240495
2661 3673761
2662 1500213
2663 1548429
2664 3605595
2665 1573299
2666 968583
2667 7326225
2668 1080345
2669 1259829
2670 2277663
2671 2420439
2672 3083613
2673 11958531
2674 4792023
2675 1161735
2676 4933443
2677 643641
2678 10203777
2679 61269
2680 1436325
2681 2024211
2682 8889465
2683 4113411
2684 4908435
2685 93429
2686 3934047
2687 3287829
2688 7006263
2689 1060011
2690 1041795
2691 398589
2692 7944825
2693 964149
2694 1350795
2695 59415
2696 902343
2697 1074075
2698 6025185
2699 1113525
2700 1925445
2701 1549605
2702 6286287
2703 5440785
2704 2354745
2705 1053399
2706 977427
2707 32811
2708 5547693
2709 5487639
2710 481605
2711 437835
2712 1341195
2713 1060089
2714 1808097
2715 1783239
2716 1843857
2717 16812351*
2718 5734713
2719 2510079
2720 482103
2721 6000501
2722 1479627
2723 2945835
2724 2860125
2725 1531395
2726 792537
2727 3262599
2728 3397107
2729 3935889
2730 2321433
2731 7364859
2732 14301783
2733 3360051
2734 1315497
2735 2263065
2736 14572653
2737 6372735
2738 481545
2739 6473169
2740 340065
2741 2700729
2742 421845
2743 52011
2744 1766127
2745 1049505
2746 1573557
2747 1362159
2748 84255
2749 9000045
2750 2069775
2751 3219225
2752 2133207
2753 2330175
2754 1615203
2755 213255
2756 2106765
2757 11027769
2758 2996775
2759 238881
2760 1667967
2761 5267661
2762 3044367
2763 5110275
2764 7759845
2765 2507301
2766 1068525
2767 292209
2768 11093037
2769 566409
2770 661635
2771 3098649
2772 640455
2773 5088489
2774 2575803
2775 467661
2776 617433
2777 4566309
2778 2330307
2779 556779
2780 14337705
2781 3220305
2782 689613
2783 2996889
2784 5921757
2785 5956461
2786 9335997
2787 4640235
2788 3797235
2789 1327221
2790 4215237
2791 4254195
2792 2704953
2793 630081
2794 1293315
2795 17255511*
2796 727563
2797 139755
2798 5603163
2799 5940429
2800 1967433
2801 2207439
2802 458055
2803 1702281
2804 2313933
2805 288015
2806 3456585
2807 16158471
2808 466455
2809 2227269
2810 1106493
2811 5634765
2812 1217523
2813 3071601
2814 5801007
2815 2203269
2816 2200113
2817 3194055
2818 204357
2819 1695369
2820 2646273
2821 6075
2822 287217
2823 288615
2824 4327503
2825 923289
2826 2103813
2827 20805
2828 909843
2829 1550049
2830 2468193
2831 2106699
2832 1014393
2833 1653951
2834 61947
2835 2778309
2836 6207087
2837 3304581
2838 10169775
2839 884205
2840 1612197
2841 4633191
2842 3495975
2843 4715439
2844 58053
2845 627381
2846 10725
2847 511065
2848 1123515
2849 935529
2850 1309137
2851 323601
2852 815517
2853 3369525
2854 2537325
2855 4427595
2856 4030533
2857 1534119
2858 3585705
2859 1536981
2860 4051923
2861 368595
2862 614187
2863 1922361
2864 3812463
2865 3370299
2866 2223795
2867 36159
2868 705933
2869 1398321
2870 1571097
2871 6877731
2872 512253
2873 6672081
2874 3596667
2875 539421
2876 800757
2877 8503521
2878 1886403
2879 13157931
2880 7072905
2881 3142449
2882 684015
2883 627735
2884 1975953
2885 5101209
2886 2311773
2887 88629
2888 275325
2889 2333019
2890 6826905
2891 3037191
2892 6122265
2893 4464465
2894 980265
2895 2823849
2896 1508925
2897 4519521
2898 1095363
2899 69735
2900 1371135
2901 5099181
2902 157893
2903 696405
2904 9783483
2905 328545
2906 11411613
2907 1678275
2908 2838123
2909 1841685
2910 4322745
2911 3445101
2912 791253
2913 2804205
2914 14275353
2915 6891045
2916 1539597
2917 11005071
2918 12413187
2919 6586779
2920 1629573
2921 1202271
2922 4129863
2923 5256165
2924 1206873
2925 836325
2926 2107245
2927 1020141
2928 1763907
2929 6573231
2930 4244325
2931 757491
2932 2291283
2933 7475019
2934 3297507
2935 8714775
2936 3430953
2937 2713569
2938 1426413
2939 6322515
2940 1538163
2941 2765475
2942 6645657
2943 7253025
2944 2681937
2945 12195
2946 1294725
2947 809979
2948 3103845
2949 4511325
2950 7214457
2951 4022535
2952 5410377
2953 1721469
2954 3229527
2955 3246201
2956 265977
2957 3353631
2958 2484813
2959 4155909
2960 7358085
2961 1303029
2962 4964043
2963 1839639
2964 3869667
2965 1957191
2966 429717
2967 3586251
2968 1604385
2969 3225009
2970 1524735
2971 8492799
2972 1057923
2973 482991
2974 6391455
2975 584529
2976 2337513
2977 1918329
2978 385815
2979 1990299
2980 2580915
2981 561669
2982 149013
2983 1473291
2984 547623
2985 962211
2986 5351445
2987 4388559
2988 4109163
2989 2880939
2990 6570627
2991 4028841
2992 4792815
2993 224025
2994 5546193
2995 1838061
2996 3545457
2997 1325205
2998 4013547
2999 2016735
3000 1298973
[/CODE]

kar_bon 2008-03-17 21:22

all data are now available here: [url]www.rieselprime.org/FirstKTwin.htm[/url].

roger 2008-03-20 10:50

Hi, I think I'll pitch in a bit here as well.

Reserving n=8825 to n=10000, don't know how long it will take though...

Is there any more efficient method than just using NewPGen for sieving with the auto-increase n and pfgw for testing?

roger

robert44444uk 2008-03-20 12:08

Hi Roger, happy for you to work at the far end of the first 10000 spectrum. I am doing this rather manually, I write a .bat file for cnewpgen that contains a 100 lines like:

cnewpgen -wp=02.txt -v -t=2 -base=2 -n=3108 -kmin=2 -kmax=5000000 -own -osp=5000000000

for a range of 100n

This is newpgen for command line, and would create a file called 02.txt with k checked from 2 to 5 million, stopping at p=5 million for n=3108

and finish the .bat file with

copy *.txt merged.log
del *.txt //(you should be doing this in a subdirectory with no .txt files!!!)

Then I run the .bat file through the DOS window and then run merged.log through LLR version 3.7

I extract the first twin found and then create another .bat file for those with no twins and check the next 5 million k

cnewpgen -wp=02.txt -v -t=2 -base=2 -n=3108 -kmin=5000000 -kmax=10000000 -own -osp=5000000000

It would be nice to have a programme that linked the two activities cnewpgen and LLR, and for LLR to stop when it finds a twin. That would allow much larger cnewpgen files to be created and the whole thing to run uninterrupted

Jean Penné 2008-03-20 16:28

[QUOTE=robert44444uk;129274]Hi Roger, happy for you to work at the far end of the first 10000 spectrum. I am doing this rather manually, I write a .bat file for cnewpgen that contains a 100 lines like:

cnewpgen -wp=02.txt -v -t=2 -base=2 -n=3108 -kmin=2 -kmax=5000000 -own -osp=5000000000

for a range of 100n

This is newpgen for command line, and would create a file called 02.txt with k checked from 2 to 5 million, stopping at p=5 million for n=3108

and finish the .bat file with

copy *.txt merged.log
del *.txt //(you should be doing this in a subdirectory with no .txt files!!!)

Then I run the .bat file through the DOS window and then run merged.log through LLR version 3.7

I extract the first twin found and then create another .bat file for those with no twins and check the next 5 million k

cnewpgen -wp=02.txt -v -t=2 -base=2 -n=3108 -kmin=5000000 -kmax=10000000 -own -osp=5000000000

It would be nice to have a programme that linked the two activities cnewpgen and LLR, and for LLR to stop when it finds a twin. That would allow much larger cnewpgen files to be created and the whole thing to run uninterrupted[/QUOTE]

Hi,
LLR (or cllr) has an option to stop on success :

add the line:
StopOnSuccess=1
in the .ini file, or use
cllr -oStopOnSuccess=1

Newpgen, or cnewpgen has an option to call PFGW when the stop condition is reached ; I could add the option to call another program, such as cllr, as soon as possible...
Regards,
Jean

kar_bon 2008-03-21 01:10

efficient method
 
i made two WIN-batches to do a range of k's with first twins:

this first batch (named 'do_range.bat') takes a range of k to determine and calls the second batch with parameter k
(here the range from k=100 to k=120 will be done):
[code]
FOR /L %%k IN (100,1,120) DO call do_one.bat %%k
[/code]

the second (named 'do_one.bat') batch takes one k (parameter %1) and determine the first twin, makes a file with all results in '<k>_lresults.txt' and the twin in '<k>.res' and lists the twin found in 'all_twins.txt':
[code]
cnewpgen -wp=%1.npg -v -t=2 -base=2 -n=%1 -kmin=2 -kmax=5000000 -own -osp=5000000000
cllr -oStopOnSuccess=1 %1.npg
ren lresults.txt %1_lresults.txt
FOR /F "skip=1 tokens=1,2" %%i in (%1.res) DO @echo %%j %%i >>all_twins.txt
[/code]

modifications:

- call the second batch with parameter for kmax and/or pmax other values like 'call do_one.bat %%k 20000000 3000000000' and edit the second batch first line in '(...) -kmin=2 -kmax=%2 -own -osp=%3'

- all found twins will be stored in 'all_twins.txt' so the other files are not needed anymore.
append a delete in the second batch:
[code]
del %1.npg %1.res %1_lresults.txt
[/code]

next step is to check if a twin was found. if not do another n-range for this k.

hope this helps! happy hunting :grin:
karsten

robert44444uk 2008-03-21 02:51

Sorry, I am incredibly thick, but where do you get cllr from, it is not on Jean's LLR download page

mdettweiler 2008-03-21 04:52

[quote=robert44444uk;129322]Sorry, I am incredibly thick, but where do you get cllr from, it is not on Jean's LLR download page[/quote]
It's listed as "LLR 3.7.1c, Windows command line version". :smile: It's essentially Linux LLR, but compiled for Windows (so it has all the command-line functions instead of the GUI, and thus is more suitable for being driven by a script.)

robert44444uk 2008-03-21 06:14

Brilliant, thanks, was looking on the wrong page on Jean's site

robert44444uk 2008-03-24 09:45

And here is the list from 3000 to 4000

I am well on the way from 4000 to 6000 with the automated code provided by Karsten, thank you for that, works like a dream. At some stage I need to recheck 1000 to 4000 which did not use the automated code.

[CODE]

3001 11327799
3002 1778253
3003 1228629
3004 57267
3005 4266951
3006 5456133
3007 2224539
3008 4473543
3009 4801101
3010 877683
3011 4739259
3012 7339713
3013 1022649
3014 713397
3015 1964121
3016 4105647
3017 5559
3018 2289465
3019 8539635
3020 683067
3021 5840355
3022 1794267
3023 940701
3024 18221067*
3025 1645569
3026 5786403
3027 352725
3028 5748195
3029 752385
3030 4376367
3031 856821
3032 1102707
3033 9239505
3034 762747
3035 5483421
3036 10970487
3037 3655371
3038 1088283
3039 962241
3040 1107615
3041 480039
3042 1994403
3043 6655221
3044 906315
3045 491775
3046 3854685
3047 477081
3048 1778775
3049 206379
3050 539007
3051 2204871
3052 8402763
3053 6772875
3054 513807
3055 1130211
3056 1183083
3057 798849
3058 1094667
3059 2196411
3060 3037767
3061 1944705
3062 4358805
3063 13991565
3064 5439987
3065 1183281
3066 1015245
3067 11058201
3068 441927
3069 773481
3070 2701977
3071 454065
3072 2380107
3073 5862771
3074 90705
3075 1149405
3076 5134215
3077 2384571
3078 496377
3079 2197749
3080 2605137
3081 19703565*
3082 497457
3083 1676619
3084 1740963
3085 653721
3086 1652493
3087 4630311
3088 1145373
3089 3498249
3090 1789533
3091 1590171
3092 7180893
3093 5691159
3094 1868853
3095 9388239
3096 1828047
3097 2913681
3098 1129173
3099 1856661
3100 1103985
3101 1631535
3102 765063
3103 3953985
3104 58143
3105 1948095
3106 1795197
3107 309561
3108 5026887
3109 5350731
3110 6887175
3111 1590039
3112 450735
3113 2419425
3114 1938765
3115 4567785
3116 5099007
3117 496479
3118 3543135
3119 13625325
3120 2047533
3121 6107235
3122 809367
3123 8354685
3124 7728117
3125 241455
3126 2477823
3127 2886675
3128 1651593
3129 2370669
3130 2248785
3131 8646975
3132 383505
3133 4011981
3134 464205
3135 7882395
3136 984717
3137 1379685
3138 3811017
3139 2726079
3140 15630843
3141 3922149
3142 1658103
3143 954759
3144 549057
3145 1406259
3146 2326785
3147 505995
3148 9680385
3149 2541885
3150 5548827
3151 779781
3152 446583
3153 5462559
3154 4618833
3155 2680005
3156 3039447
3157 846531
3158 11184363
3159 4404729
3160 3632445
3161 5644779
3162 1747365
3163 2523519
3164 5062557
3165 2799249
3166 1497537
3167 2585829
3168 5876553
3169 4788369
3170 935955
3171 3218091
3172 3946545
3173 883935
3174 2259183
3175 1039635
3176 3854235
3177 8884479
3178 10648245
3179 41205
3180 1322913
3181 2193381
3182 2402883
3183 6439521
3184 4259613
3185 619011
3186 5678823
3187 1537821
3188 3136983
3189 6050265
3190 386727
3191 1740705
3192 1504617
3193 1254615
3194 4940457
3195 2211135
3196 2722173
3197 11827029
3198 7151895
3199 4207401
3200 7398465
3201 4461975
3202 10062717
3203 3171771
3204 1524645
3205 2049525
3206 5548497
3207 739581
3208 3511683
3209 260019
3210 6222993
3211 298965
3212 4527783
3213 1831191
3214 1210623
3215 43095
3216 778845
3217 2851371
3218 1339197
3219 1755141
3220 1828227
3221 3487221
3222 440937
3223 2243331
3224 5077743
3225 530649
3226 4166037
3227 803919
3228 1568847
3229 49449
3230 1827027
3231 5412141
3232 7204995
3233 4335201
3234 1335987
3235 401625
3236 17617383
3237 3673605
3238 2342415
3239 6042315
3240 171195
3241 17263281
3242 896697
3243 2027349
3244 2780367
3245 6265311
3246 1646235
3247 1524819
3248 4659897
3249 1811199
3250 2445885
3251 1378101
3252 2788275
3253 4794165
3254 3638265
3255 4167849
3256 1868277
3257 688761
3258 1274457
3259 646245
3260 2544633
3261 9907545
3262 6993903
3263 11213535
3264 4938003
3265 859479
3266 10618413
3267 2066649
3268 6828453
3269 4123479
3270 2393823
3271 1322985
3272 1603773
3273 4133805
3274 1165143
3275 4763205
3276 1414233
3277 540645
3278 2790477
3279 5075961
3280 9053913
3281 1038855
3282 2311563
3283 1149
3284 5411685
3285 10112589
3286 6481113
3287 189675
3288 6339525
3289 4826541
3290 2308215
3291 11034189
3292 311823
3293 1014675
3294 4391343
3295 2058225
3296 4023837
3297 6713031
3298 1230063
3299 11068569
3300 7820355
3301 220341
3302 4873485
3303 1563705
3304 5631213
3305 750879
3306 793707
3307 15529215
3308 3006795
3309 10797021
3310 2324205
3311 10376619
3312 3336837
3313 417921
3314 8371203
3315 521349
3316 4882893
3317 7492965
3318 608235
3319 2201625
3320 6462663
3321 7647699
3322 271875
3323 820161
3324 1176357
3325 18640221
3326 6551943
3327 16468035
3328 4485795
3329 579855
3330 1556667
3331 2406231
3332 2928765
3333 1645875
3334 490953
3335 8920941
3336 310923
3337 681801
3338 2081283
3339 651639
3340 2048103
3341 935715
3342 8651907
3343 4449759
3344 217827
3345 8565309
3346 4936275
3347 4920285
3348 1291587
3349 18933489
3350 16340397
3351 1667811
3352 3221505
3353 5795565
3354 754953
3355 4393605
3356 10937847
3357 327435
3358 441345
3359 1111065
3360 5813973
3361 4535475
3362 2416863
3363 9429459
3364 11125317
3365 2155839
3366 4065105
3367 8383731
3368 646215
3369 1131615
3370 1511637
3371 8086005
3372 655347
3373 2853069
3374 11505843
3375 13462209
3376 11596695
3377 8702205
3378 6362787
3379 6095235
3380 966897
3381 2310021
3382 5008185
3383 12774891
3384 13691535
3385 1518249
3386 1082763
3387 3354165
3388 14234487
3389 6531651
3390 2800317
3391 697425
3392 1836723
3393 3689871
3394 5157615
3395 10154229
3396 10408485
3397 7044555
3398 8125617
3399 2255199
3400 1466247
3401 8338635
3402 319863
3403 10669995
3404 8443023
3405 1424409
3406 4801155
3407 1057101
3408 788655
3409 1476711
3410 380883
3411 608121
3412 1292913
3413 335019
3414 1541127
3415 7469775
3416 234417
3417 5444175
3418 5881743
3419 8471001
3420 196443
3421 4026465
3422 7596177
3423 1475355
3424 4192383
3425 4892985
3426 34365
3427 1231251
3428 929337
3429 3840645
3430 1783413
3431 2004831
3432 118683
3433 744735
3434 6051387
3435 4299981
3436 2392623
3437 6429639
3438 2536875
3439 1794771
3440 465447
3441 16641231
3442 4873815
3443 529491
3444 5970255
3445 9157905
3446 1762617
3447 21868521*
3448 7103535
3449 6075495
3450 7639767
3451 3663801
3452 3164127
3453 498405
3454 1470195
3455 21776115
3456 1008873
3457 2283045
3458 5914947
3459 2347965
3460 2403
3461 9759795
3462 3798273
3463 5982039
3464 1292427
3465 437661
3466 3143433
3467 457239
3468 1637043
3469 8104971
3470 2870433
3471 1506459
3472 1757043
3473 3246645
3474 4450677
3475 2877495
3476 2012343
3477 136101
3478 2741835
3479 3209121
3480 834543
3481 2822259
3482 6361023
3483 4127931
3484 234627
3485 11344311
3486 1664205
3487 11405631
3488 3978573
3489 7706475
3490 1479987
3491 7264071
3492 3082215
3493 1117509
3494 169113
3495 3745065
3496 10908093
3497 298269
3498 2453475
3499 578271
3500 3420243
3501 3764295
3502 1102095
3503 83331
3504 11214327
3505 5803065
3506 18678603
3507 8350209
3508 11915847
3509 14353455
3510 3388455
3511 11006571
3512 1786707
3513 4895355
3514 2641665
3515 2094345
3516 1528053
3517 8807955
3518 1141893
3519 3658749
3520 4023957
3521 6055755
3522 536007
3523 2515149
3524 3922713
3525 2786595
3526 2748705
3527 10102011
3528 3368745
3529 2335251
3530 3694947
3531 1761069
3532 3793827
3533 320949
3534 311853
3535 5826549
3536 30030213*
3537 5817735
3538 10338573
3539 490725
3540 906087
3541 16079481
3542 1675425
3543 7060419
3544 10574367
3545 2110749
3546 7949403
3547 5425035
3548 4554465
3549 1049835
3550 4167927
3551 36159
3552 5602833
3553 4845
3554 1116633
3555 2448141
3556 3248883
3557 9527571
3558 13819515
3559 5143929
3560 821355
3561 4781319
3562 7074795
3563 3244389
3564 4943883
3565 3059691
3566 1447125
3567 9316485
3568 3355737
3569 1028079
3570 9272205
3571 1195545
3572 3210267
3573 2469555
3574 3513405
3575 3213129
3576 943653
3577 8409975
3578 8154345
3579 4391349
3580 5231913
3581 4037565
3582 632973
3583 6762285
3584 1909995
3585 757221
3586 1052547
3587 51591
3588 1436745
3589 1394499
3590 1838493
3591 1446441
3592 7545525
3593 4959795
3594 358197
3595 3686529
3596 2835105
3597 3291675
3598 2741643
3599 3672369
3600 11381697
3601 88311
3602 5226843
3603 13421469
3604 763383
3605 20265291
3606 866043
3607 2063979
3608 14246805
3609 551451
3610 3024513
3611 6735105
3612 2109657
3613 8030661
3614 15164145
3615 1871769
3616 101793
3617 3834831
3618 867813
3619 4734219
3620 7564407
3621 7426851
3622 1832397
3623 4553451
3624 3902925
3625 7138629
3626 183207
3627 1829571
3628 1279137
3629 2972571
3630 3578055
3631 695505
3632 1570197
3633 4747521
3634 218217
3635 7624971
3636 4811265
3637 10434111
3638 10060095
3639 6018639
3640 1685697
3641 69069
3642 3377103
3643 722799
3644 4764225
3645 17551545
3646 40713
3647 871161
3648 3743103
3649 3035499
3650 9300423
3651 13100145
3652 5785683
3653 1117161
3654 3012093
3655 5727045
3656 8689317
3657 4655859
3658 5240325
3659 2613771
3660 2691477
3661 1396761
3662 1336947
3663 7134459
3664 2071407
3665 1586931
3666 1117755
3667 3701949
3668 6270057
3669 5194479
3670 470445
3671 879915
3672 3355863
3673 3868779
3674 5384637
3675 2319609
3676 995223
3677 1140441
3678 2556123
3679 3380589
3680 2764605
3681 1761519
3682 467817
3683 3504579
3684 3103173
3685 1513065
3686 654837
3687 5218449
3688 1863423
3689 22770201
3690 3466515
3691 1159935
3692 23318625
3693 865035
3694 3506907
3695 2542575
3696 149307
3697 1861239
3698 581703
3699 251949
3700 3348087
3701 7300875
3702 6583287
3703 11884431
3704 864753
3705 11780661
3706 1586163
3707 799701
3708 1634535
3709 3200829
3710 5050125
3711 1274625
3712 14894643
3713 4712235
3714 1193253
3715 1290339
3716 4448613
3717 1342059
3718 6272373
3719 1553145
3720 11276415
3721 24377115
3722 5373
3723 2303775
3724 256983
3725 9673581
3726 731085
3727 10665585
3728 1627305
3729 5389029
3730 1094247
3731 2147445
3732 5120325
3733 11700555
3734 3075747
3735 16801449
3736 10925907
3737 758229
3738 582225
3739 226821
3740 6842415
3741 4527345
3742 12438273
3743 11021475
3744 5235087
3745 567699
3746 6729237
3747 6554559
3748 2907567
3749 1642299
3750 2696313
3751 1345359
3752 11093967
3753 11828379
3754 5246373
3755 310281
3756 6747213
3757 1090341
3758 5244135
3759 1357419
3760 647493
3761 10306425
3762 7019337
3763 4186665
3764 1101783
3765 8613621
3766 13109175
3767 4098219
3768 7917255
3769 1413375
3770 3654585
3771 766965
3772 311205
3773 3171081
3774 3713133
3775 4844259
3776 5110785
3777 5264931
3778 15195945
3779 6132525
3780 884655
3781 630279
3782 6374487
3783 12981315
3784 337287
3785 7909695
3786 7116945
3787 4048815
3788 2898183
3789 12112959
3790 1394595
3791 1356429
3792 4871577
3793 602649
3794 1688715
3795 6195945
3796 1468707
3797 6810159
3798 7056423
3799 1500339
3800 10236867
3801 14672469
3802 7185183
3803 6276081
3804 5248563
3805 3696951
3806 541485
3807 16553439
3808 323955
3809 9581631
3810 3270423
3811 3471609
3812 3319245
3813 178245
3814 16093533
3815 12826059
3816 1638747
3817 2902641
3818 2791167
3819 356421
3820 2576775
3821 1790649
3822 5221407
3823 583305
3824 3079317
3825 860391
3826 4935
3827 6557859
3828 8774805
3829 2560185
3830 21417
3831 2191599
3832 7320285
3833 26671995
3834 1924713
3835 8765391
3836 14845167
3837 4664331
3838 515157
3839 7250265
3840 1840935
3841 17154411
3842 10969077
3843 4657389
3844 3903135
3845 433125
3846 24015
3847 3122355
3848 3970305
3849 614241
3850 1114503
3851 5460651
3852 8561115
3853 1405425
3854 16622085
3855 345975
3856 12845043
3857 313425
3858 6067215
3859 10665879
3860 3436173
3861 15938241
3862 4307835
3863 11008731
3864 3198135
3865 11608029
3866 6879243
3867 31539
3868 2401203
3869 727485
3870 4268667
3871 6845475
3872 3763395
3873 88071
3874 3109155
3875 6900405
3876 3830265
3877 4271889
3878 804993
3879 851319
3880 2025897
3881 6122841
3882 7790097
3883 3274959
3884 2825067
3885 583215
3886 1371495
3887 704739
3888 1150803
3889 4750881
3890 163713
3891 80661
3892 4168257
3893 13037079
3894 7722837
3895 2644749
3896 6221445
3897 1991259
3898 2168025
3899 2822931
3900 2592915
3901 956271
3902 10436037
3903 16066479
3904 868533
3905 10067649
3906 19038357
3907 5179959
3908 6706725
3909 558999
3910 5138097
3911 5984979
3912 183447
3913 2684409
3914 2158167
3915 458631
3916 387603
3917 168675
3918 897867
3919 3219945
3920 1848927
3921 668061
3922 21628257
3923 653559
3924 5505147
3925 5991099
3926 6394893
3927 488721
3928 695703
3929 1724961
3930 3839253
3931 10069089
3932 1756443
3933 1135071
3934 1346967
3935 7439481
3936 884775
3937 4559961
3938 986205
3939 833271
3940 437487
3941 760449
3942 34407
3943 4179405
3944 778305
3945 1185681
3946 4312245
3947 2862591
3948 2280063
3949 3054765
3950 1696317
3951 2821191
3952 7339773
3953 3097815
3954 7194483
3955 6812415
3956 6337785
3957 3683241
3958 3434685
3959 4097649
3960 1203207
3961 10633029
3962 1316613
3963 1068609
3964 1243293
3965 1080099
3966 653685
3967 4908591
3968 6922125
3969 13950291
3970 4853193
3971 5027079
3972 13371057
3973 1099329
3974 10041783
3975 11829141
3976 7373997
3977 1169811
3978 6481113
3979 2615559
3980 3727485
3981 2637075
3982 7703085
3983 20695455
3984 24731145
3985 11197851
3986 13448553
3987 1152459
3988 541437
3989 49455
3990 2894133
3991 8764455
3992 1254585
3993 1886619
3994 6410487
3995 1657929
3996 2346255
3997 8545521
3998 2564187
3999 9635589
4000 2515263

[/CODE]

robert44444uk 2008-03-24 12:14

[QUOTE=robert44444uk;128009]Gary/ Karsten

Results of first instance primes to 1400 show a rather nice curve when plotting ln(k/n) against n. Best fit looks to be logarithmic as well. Would be interested to know if this might be a good way to target large twins. For example, [U]if[/U] the extrapolation of the best fit to n=333333, gave A= ln(k/n)= 9, then the first twin would be, on average, at k=2.70103*10^9 then the test might look at n from 333333 to n 333433, say at A=8.999 to 9.001 or k=2.69833*10^9 to 2.70373*10^9. A 50 million k range, sieved to 1T would provide about 4,000 candidates for prime checking or 400,000 overall for a 100 k range.


[/QUOTE]

Values within x% either side of the of the forecasted first value for each of the first 4000n:

1% 20
2% 56
3% 84
4% 109
5% 145
6% 168
7% 192
8% 215
9% 238
10% 261

No apparent abnormal density factors at play here

roger 2008-03-24 21:40

Where can I get this automated code Karsten did?
Unfortunately, my range is going slowly, as I have only found 55 (5%), and sieved for 390 (33%). It should improve as my search continues, when it is more organized :redface:

roger

kar_bon 2008-03-25 00:19

data for n upto 4000 are online!

to roger: to get the scripts look some posts above!

robert44444uk 2008-03-25 05:03

It is important to pick quite a large range of k to sieve, and sieve to a suitable depth, I suggest k=0.5*2^n. The automated script will stop on success. LLRing takes the most time

roger 2008-03-25 05:24

Are the scripts referred to cLLR? Or cNewPGen? I don't see an attached file, but are the codes kar_bon posted what I'm looking for?

Thanks!

BTW: at the moment, I'm using NewPGen to sieve for 0<k<20M as 10M just doesn't seem to be enough. And yes, the LLRing is taking a lot longer than the sieving.

kar_bon 2008-03-25 09:35

cllr (LLR console application) can be found here: [url]http://jpenne.free.fr/llr3/cllr371c.zip[/url]
cnewpgen (NewPGen console version) can be found here: [url]http://jpenne.free.fr/NewPGen/[/url]
the scripts are all you need: two WIN-batch files. that's all.
copy the 2 code-sections in the named files, put these with cllr and cnewpgen i the same folder and start the first with your range (and 2nd with some other parameters for nmax and pmax).
[b]these few[/b] lines of code is all you need!!! simple!
and much time!!!!!

robert44444uk 2008-03-26 17:35

Got a bit of a chat going with Bob Silverman and others about the mathematics, found here:

[url]http://www.mersenneforum.org/showthread.php?p=129815#post129815[/url]

gd_barnes 2008-03-28 20:28

[quote=robert44444uk;129823]Got a bit of a chat going with Bob Silverman and others about the mathematics, found here:

[URL]http://www.mersenneforum.org/showthread.php?p=129815#post129815[/URL][/quote]

BRILLIANT ANALYSIS on the reason to search less k over a range of n instead of a fixed-n for a twin prime search!

Before getting to that post where you used the median first k for your analysis, I was about to post in there that I thought the median would be a much better measure than the mean. When I saw that you concluded it and then did the statistical analysis to MATHEMATICALLY PROVE that it makes more sense to search a much smaller range of k over a range of n instead of doing a fixed-n search, I felt vindicated because I had originally stated it in this thread (weeks after suggesting it to the leader of TPS) and it seemed clear to me in my 'ALL twin prime search' that it is a much more effective way to search for large twins. Of course my reason was different: The time saved in LLRing lower k's well more than makes up for the sieving time saved on a twin prime search on a fixed-n. So now we have TWO reasons!

On a related side note; I haven't see this mentioned in any thread about twin prime searching: It is NOT proven that there is NOT a highest twin prime. Of course it seems almost certain that there is not a highest twin, but we can't say for sure. There is a possibility, however infinitesimal it may be, that TPS is searching above the highest possible twin. It's funny to even think that might be a possibility.

BTW, I got word that PrimeGrid is going to attempt a Twin and Sophie Germain prime search for a fixed n=666666. Sounds crazy to me. What do you think of that? Now we'll get a bunch of n=666666 primes on top-5000. (yuck!) But this confused me. I thought TPS was going to do a fixed-n twin search on n=500K. Have you heard about either of these efforts?


Gary

roger 2008-03-28 20:48

What are the changes in searching for these twins then?

Are we doing a range of some millions around where the twin is expected to be found, then search below if one is found to be sure?

Are we still searching by the n-value, like in NewPGen?

roger

robert44444uk 2008-03-29 03:51

I think it is true to say that it is not mathematically proven, despite Gary's kind works, but I have extended comparison at 0.24*n^2 and it still holds.

I have also shown that searching around the expected value does not provide any greater chance of finding a prime, see post #53, by searching around the level of this median value.

What the median formula provides, however are some reasoned bounds around testing levels to arrive at close to 100% chance of finding a twin, this calculation provides a significant reduction over the 100G searched in the TPS 333333 search down to about 43G, using the first tenth of a percentile over a range of 1,000 n.

TPS was lucky with the 190000 search level, finding the twin in the 2G range, whereas 0.24*n^2=8.6G.

It might me worth experimenting a bit with this, but at a lower n, to make sure we are happy with the approach, after all we have all of the tools we need right now, except a distributed approach.

We could test this at say n=30000, according to the approach, we could check n from 29975 to 30025, which is 50 n, and check therefore up to the second percentile of 0.24*30000^2 -> k=4320000, we should obtain one twin.

At the same time check all of the first instance k for this range to see its median is close to the forecast of 216M. If we look at variance in a graph of median versus the formula, then the median was >200% for the formula only in four instances (3925,3939,3940,3941), and was never <50%.

I think that an interesting observation is that there has not been any really rogue n value, whereby you might find no twins, the asterisked champions are at relatively low values.

robert44444uk 2008-03-29 05:06

Ugh, my last post was horribly written, it was posted between power cuts (which are very frequent here) and it was too late to edit after the power came back. Apologies for that.

Checking this particular k=29975-30025 range is interesting as we already know from Gary's work that there is no twin up to k=1M in the range. The range of k to be sieved is 800% of median, as we are also looking to actually find the first k for each n in the range. i.e from k=1M to k=1.6G.

As far as checking for twin+SG, I think 666666 is not very logical at all. To begin with checking takes time, by checking SG & twin you are eliminating some k which are either SG or twin, i.e. those which are twin but for which SG partner has no small factors and vice versa.

Much more sensible is to check not too far above the current record of n=195000, say n=200000 using the approach we are discussing. We would find a record much faster than TPS or PrimeGrid, all they will do is find top 5000 primes, which is not so exciting after the first few. No one talks about Mr X and his 25674165667*2^333333-1 find, ranked 4345th biggest prime ever (made that up), but a new twin record and you are in the books for ever.

Will probably post 4000-5000 today

kar_bon 2008-03-29 12:44

to Robert:
do you use the scripts i gave? how they work? any problems?
what are the current parameters (nmax and pmax for cnewpgen) you use?
how long do the scripts run? timings?
i'll try to firgure out how i can enhance them for a k when no twin is found.
and to continue a work when canceled.
karsten

robert44444uk 2008-03-29 16:08

Karsten, script works fine, I just have no computing power. I tend to vary the scripts based on where I am , but I am setting the upper k limit for cnewpgen at 10*0.24^n^2 or thereabouts. Checking lots of k adds no time, and therefore I don't have to worry about stoponsuccess not kicking in, it always does. pmax tends to be not too high..5G at n=5000.

The only problem is that I am using del commands on each n, and sometimes the del kicks in before the write to alltwins.log. But that happens only one time in a couple of hundred, so I need a small delay command, but I can't remember what that is. Long time since I used dos.

roger 2008-03-29 22:03

Karsten:

I've got the scripts working now (they work great so far!), and haven't had any problems.

The parameters I'm using right now are: kmax=20,000,000; pmax=25,000,000,000 which leaves around 15,000 candidates. The sieving takes around 4.1 minutes per n-value. Each k takes between 150 and 350 ms (depending on the k-value).

The stop on success option will help lower the time it will take, as well as running two instances, but it will still take a while...

EDIT: Robert, do you mean kmax=10*0.24 * n^2?

roger 2008-03-29 23:52

also, I deleted the line that erases the lresults.txt, for archive purposes and to doublecheck that a twin/no twins have been found, and the range.

kar_bon 2008-03-30 01:04

to Robert:
to wait a time try this:
[code]
CHOICE /C:YN /T:Y,5 >nul
[/code]

this command waits 5 seconds before continuing the batch.

the 'choice' command was standard in old DOS-versions. if it's not in your distribution (like mine for XP) you can download it here:
[url]ftp://ftp.microsoft.com/Services/TechNet/Windows/msdos/RESKIT/SUPPDISK/[/url]

hope it helps.

robert44444uk 2008-03-30 06:30

[QUOTE=roger;130230]Karsten:

I've got the scripts working now (they work great so far!), and haven't had any problems.

The parameters I'm using right now are: kmax=20,000,000; pmax=25,000,000,000 which leaves around 15,000 candidates. The sieving takes around 4.1 minutes per n-value. Each k takes between 150 and 350 ms (depending on the k-value).

The stop on success option will help lower the time it will take, as well as running two instances, but it will still take a while...

EDIT: Robert, do you mean kmax=10*0.24 * n^2?[/QUOTE]

I think you should greatly expand the k you are testing - at the n=8500, suggestion is k up to 173 million using my kmax formula. 20 million and you are only above the median by a bit, and you will have to do the whole exercise all over outside of automated programme.

As you will not be actually using most of these k (9/10ths will be above the median), then there is no reason to sieve very deeply, and your sieve computation should assume therefore that the you will LLR only to the median. In that case, the time of the sieve should be such that sieve time+LLR time is minimised. You will have to test about 13000 candidates to get to the median, and this will take approx 43 minutes at 5 per second. So in principle, you could sieve a little higher, as long as the candidates are being eliminated at 10* the time taken to run an LLR test. But to me p=50 billion is probably not horribly off mark. I always hope that I will find the twin really quickly and I hate it when the LLR runs close to kmax, only then do I rue not sieving higher.

Cybertronic 2008-03-30 10:17

We find for n=9999 : k=594501 found in 5 minutes

I have also a suggestion for kmax:
upperlimit for k-candidates is:

number of candidates=(( n * ln(2) ) / ln(pmax^2) *1.1 )^2

You get for n<10000 about a k range from 0 to 35000000 and a good chance
to find a twin with a special n.

regards

roger 2008-03-30 10:32

I'll change my kmax to 50M, and see what happens. It takes a long time to test so many k's: for kmax=50M, with ~0.075% (37500) candidates remaining, that's 2.6 hours per n :shock: though with the stoponsuccess option, it will be considerably less time.

Cybertronic 2008-03-30 11:10

For n=10000: is 10642317 * 2^10000+/-1 the smallest twin.

BTW, k=44.1 G is the upper limit for the 333333 project.
My hint : 425******** x 2^333333 +/- 1 is twin :-)

robert44444uk 2008-03-30 13:31

Hi Cybertronic, welcome to the debate.

At 44.1G you are into the median expected values. But the density of twins is no better here than anywhere else, but I will bet that if there is no twin found <44.1G, then there will be one before 350G !!! But that is a lot still to check, I think.

But GL in finding your 333333 twin. Hope you turn out to be right in your forecast.

roger 2008-03-30 18:59

Thanks for n=9999 Cybertronic, but I already have n=10000. If you want to reserve a range, by all means, do so.
It looks like the reserved/completed ranges are: 0->5000, 8825->10000.

Cybertronic 2008-03-30 22:14

which ranges are free ?

Cybertronic 2008-03-30 23:04

perhaps also from interest
 
I have checked all n up to 4000

1 candidate is also quadruplet :n=153
42 candidates are triplets.

1179 *2^ 23 +5
429 *2^ 37 +5
429 *2^ 37 -5
519 *2^ 55 -5
657 *2^ 58 +5
147 *2^ 60 -5
1623 *2^ 64 +5
2469 *2^ 67 -5
4497 *2^ 68 +5
7029 *2^ 71 +5
14487 *2^ 90 -5
4107 *2^ 100 -5
1203 *2^ 104 -5
1983 *2^ 124 -5
3741 *2^ 153 +5
13719 *2^ 191 -5
24087 *2^ 220 +5
77751 *2^ 235 -5
99297 *2^ 304 -5
14649 *2^ 313 +5
88791 *2^ 323 +5
18669 *2^ 367 +5
83211 *2^ 519 -5
47403 *2^ 524 -5
228651 *2^ 609 +5
526701 *2^ 797 -5
163497 *2^ 984 +5
193443 *2^ 1068 +5
818961 *2^ 1083 -5
42399 *2^ 1229 -5
856821 *2^ 1381 -5
849261 *2^ 1455 +5
884751 *2^ 1651 -5
96897 *2^ 1676 +5
3934047 *2^ 2686 +5
32811 *2^ 2707 +5
3353631 *2^ 2957 -5
877683 *2^ 3010 -5
549057 *2^ 3144 +5
440937 *2^ 3222 +5
1868277 *2^ 3256 -5
5991099 *2^ 3925 +5

roger 2008-03-30 23:37

It looks like the free ranges are n=5000->8824, and anything above n=10000. Use the batch files kar_bon posted above along with cLLR and cNewPGen (links posted above).

robert44444uk 2008-03-31 02:54

Whoa

Hold up here. I have already gone a fair way through 5000-6500. So please lets get co-ordinated!

Thank you for checking 1-4000, I hope there were no errors, and below is 4000-5000. Only 3 new jumping champions.

[CODE]
4001 4147569
4002 5197923
4003 9237201
4004 1752213
4005 7392921
4006 1173417
4007 20778009
4008 1767783
4009 1929279
4010 9192093
4011 2000241
4012 1056495
4013 5072781
4014 21829155
4015 3025125
4016 2271237
4017 3079239
4018 7446675
4019 1325265
4020 10499793
4021 15669051
4022 700473
4023 512601
4024 4710525
4025 12373245
4026 25752855
4027 9886899
4028 3744483
4029 17085729
4030 559995
4031 3738909
4032 7092237
4033 11309235
4034 555723
4035 1711971
4036 4689015
4037 2634645
4038 1412535
4039 4782045
4040 3622107
4041 1741005
4042 263433
4043 567405
4044 1929993
4045 1462035
4046 13007817
4047 1762521
4048 4768785
4049 11351295
4050 4382823
4051 8548335
4052 9731337
4053 14791299
4054 5432307
4055 863199
4056 4503723
4057 2052315
4058 3951753
4059 4845939
4060 2304645
4061 2198175
4062 3257805
4063 6871479
4064 1771017
4065 7095429
4066 339087
4067 3011271
4068 9340845
4069 2449719
4070 2476533
4071 654579
4072 4517913
4073 1471365
4074 713685
4075 3316269
4076 718665
4077 12635481
4078 19312347
4079 4869411
4080 2631717
4081 174879
4082 4784613
4083 10594581
4084 14811573
4085 9038949
4086 16140675
4087 2990205
4088 243795
4089 352389
4090 6723393
4091 2609769
4092 6747153
4093 907725
4094 2719305
4095 982335
4096 2130693
4097 4399545
4098 8337483
4099 9711471
4100 12136155
4101 8713581
4102 4163985
4103 717525
4104 4354287
4105 2898471
4106 1813155
4107 4587585
4108 1742307
4109 836751
4110 6181347
4111 4095729
4112 1859865
4113 2534661
4114 116313
4115 4173981
4116 1082037
4117 3767961
4118 928683
4119 16632609
4120 42572193*
4121 1443771
4122 17977425
4123 5984679
4124 4053885
4125 623499
4126 5819847
4127 55853139*
4128 3763035
4129 602079
4130 1883577
4131 7249989
4132 14967405
4133 3521175
4134 2434497
4135 7922469
4136 5506053
4137 2285895
4138 12862107
4139 1206465
4140 3288423
4141 10603671
4142 1526175
4143 3608019
4144 9183993
4145 5062821
4146 5324223
4147 11652549
4148 7213035
4149 5353701
4150 7994973
4151 9831891
4152 9932823
4153 793515
4154 10844163
4155 5034741
4156 2383257
4157 3500085
4158 11951205
4159 996735
4160 14606115
4161 24134451
4162 17500413
4163 320529
4164 111573
4165 4214799
4166 10678137
4167 13106685
4168 6658317
4169 1881741
4170 13800507
4171 1315461
4172 37843593
4173 2347095
4174 9794493
4175 1579431
4176 2855223
4177 9561711
4178 11135817
4179 4778295
4180 8928675
4181 5597595
4182 5621583
4183 1580535
4184 6985017
4185 449949
4186 12173085
4187 12751539
4188 7751607
4189 674235
4190 9015387
4191 18795459
4192 6787167
4193 3668211
4194 3570495
4195 449841
4196 19934715
4197 10339371
4198 34758087
4199 3062121
4200 23831535
4201 8191689
4202 4670277
4203 14047131
4204 12249897
4205 2703981
4206 11968623
4207 4260879
4208 8983635
4209 4561179
4210 3254517
4211 4763349
4212 9014493
4213 2011869
4214 2300367
4215 11868741
4216 2534475
4217 8219919
4218 5128893
4219 941421
4220 1328055
4221 5296389
4222 3006015
4223 4363281
4224 902883
4225 15034761
4226 490263
4227 2405079
4228 5595207
4229 5350275
4230 7985073
4231 1989009
4232 5872395
4233 7507665
4234 1443855
4235 13782111
4236 10167255
4237 4070361
4238 10651827
4239 138009
4240 3286257
4241 2819649
4242 491547
4243 3783519
4244 3233517
4245 6763335
4246 734193
4247 17920029
4248 7857363
4249 684291
4250 4690353
4251 8541375
4252 4221735
4253 1792431
4254 14364465
4255 1263771
4256 665763
4257 4611861
4258 2422365
4259 19933635
4260 3592017
4261 3091125
4262 957957
4263 4035705
4264 2415567
4265 27452691
4266 16480137
4267 5148171
4268 16075587
4269 257241
4270 3043467
4271 3833985
4272 10074993
4273 12296349
4274 8986233
4275 5226741
4276 16431303
4277 8013351
4278 12607257
4279 11052441
4280 5403153
4281 1014549
4282 977103
4283 878571
4284 5151975
4285 5956551
4286 1944837
4287 4141749
4288 3464043
4289 247065
4290 2056485
4291 38173815
4292 5202555
4293 2280561
4294 2474367
4295 5126421
4296 19057503
4297 22449621
4298 6859227
4299 1421535
4300 10365747
4301 5867091
4302 6584457
4303 440229
4304 10883715
4305 1485039
4306 21385155
4307 13705665
4308 4159227
4309 12113949
4310 3337653
4311 106131
4312 15493413
4313 2107305
4314 8822523
4315 1897905
4316 2672793
4317 9396009
4318 28262925
4319 7706091
4320 1446447
4321 15641001
4322 14597997
4323 3195591
4324 6721995
4325 3352131
4326 4382907
4327 9512475
4328 6042225
4329 7928751
4330 7132593
4331 2027631
4332 587277
4333 6590199
4334 50591937
4335 32721
4336 32976393
4337 17708079
4338 1701303
4339 1809435
4340 2802135
4341 2097219
4342 1387797
4343 574701
4344 7546725
4345 22526925
4346 1557555
4347 952305
4348 4064643
4349 12341049
4350 208887
4351 12564945
4352 2268675
4353 104241
4354 16815345
4355 1280415
4356 24151365
4357 543699
4358 865035
4359 2830839
4360 2309985
4361 3991215
4362 8421147
4363 22296339
4364 3132933
4365 2673891
4366 8549973
4367 4352079
4368 6146175
4369 7636725
4370 6608433
4371 2568081
4372 12767523
4373 2443125
4374 2438517
4375 119895
4376 5801025
4377 3375285
4378 2417847
4379 16317645
4380 12325887
4381 326115
4382 14899623
4383 5964345
4384 23140077
4385 1665045
4386 502953
4387 1184469
4388 2368797
4389 1290261
4390 12547527
4391 7195731
4392 2812773
4393 1322631
4394 14447115
4395 6289701
4396 4998957
4397 1475751
4398 4326345
4399 6280119
4400 7162623
4401 11912661
4402 4430475
4403 1491171
4404 3517803
4405 50143095
4406 6340473
4407 2067195
4408 4154295
4409 3698145
4410 14053875
4411 1501521
4412 12986583
4413 3457731
4414 6179745
4415 5092629
4416 668103
4417 3672165
4418 9048117
4419 34060065
4420 2864787
4421 6286029
4422 13699185
4423 7288671
4424 228477
4425 9349305
4426 1234875
4427 7029309
4428 13309587
4429 13686819
4430 395655
4431 402801
4432 11848377
4433 21385095
4434 34698843
4435 13259451
4436 6601797
4437 379269
4438 814605
4439 3960771
4440 4767495
4441 13650909
4442 3646803
4443 3469281
4444 3403317
4445 970785
4446 3855873
4447 7807059
4448 10377543
4449 3038871
4450 7373547
4451 3574395
4452 842307
4453 5856249
4454 5364327
4455 3213045
4456 5330457
4457 2229261
4458 227757
4459 23481015
4460 28485345
4461 13996815
4462 2054613
4463 15783111
4464 10158507
4465 2520579
4466 8478735
4467 2341299
4468 7463547
4469 1200711
4470 10794417
4471 7310421
4472 6715587
4473 4442139
4474 1762665
4475 5796651
4476 2650737
4477 5588535
4478 18120603
4479 29720421
4480 16043427
4481 37383291
4482 5716695
4483 1461711
4484 4246137
4485 4616169
4486 20749035
4487 8742285
4488 1172997
4489 2249505
4490 2302287
4491 702501
4492 5405583
4493 2972775
4494 14668215
4495 3375609
4496 3634275
4497 2720205
4498 8718855
4499 18231405
4500 1161615
4501 1178661
4502 10074933
4503 13096125
4504 887733
4505 4299159
4506 5578317
4507 4633839
4508 4300587
4509 5443125
4510 9742923
4511 4495575
4512 852927
4513 12113151
4514 2234193
4515 5462811
4516 7343313
4517 9926259
4518 4564527
4519 10684011
4520 18154275
4521 11430591
4522 4800633
4523 6909141
4524 5697363
4525 594165
4526 11545107
4527 5021289
4528 292143
4529 4062741
4530 2270205
4531 1705185
4532 877593
4533 4697361
4534 3804453
4535 4756251
4536 4153593
4537 17579571
4538 1285917
4539 5114445
4540 29486415
4541 2171961
4542 7361685
4543 1071075
4544 1726263
4545 9139035
4546 3212145
4547 290835
4548 3076533
4549 1309191
4550 10631043
4551 18137331
4552 238743
4553 2993535
4554 7959705
4555 16069611
4556 13019703
4557 6074871
4558 8136387
4559 10301661
4560 6983265
4561 9906855
4562 2622465
4563 6018051
4564 237903
4565 10525761
4566 6373437
4567 703341
4568 2559603
4569 5012499
4570 18235965
4571 1018731
4572 6225825
4573 11385729
4574 4184433
4575 7321521
4576 7490463
4577 2872485
4578 16817283
4579 2281341
4580 2347323
4581 9486591
4582 25494177
4583 10972389
4584 348747
4585 8892939
4586 314607
4587 11923851
4588 2410275
4589 7503705
4590 146787
4591 197595
4592 5185935
4593 6009519
4594 21133947
4595 22808649
4596 548067
4597 4112031
4598 3006213
4599 280569
4600 21490167
4601 1803669
4602 10967127
4603 1280655
4604 2881677
4605 2428389
4606 7146327
4607 3073935
4608 3506277
4609 8614479
4610 31193595
4611 211179
4612 1609713
4613 13070175
4614 4585845
4615 1718169
4616 3219315
4617 6736131
4618 9814695
4619 66969
4620 13406577
4621 5464989
4622 10128525
4623 15185835
4624 2413203
4625 623511
4626 1403787
4627 1820055
4628 17699475
4629 7434375
4630 8933127
4631 28597089
4632 546513
4633 12029451
4634 9803373
4635 4144131
4636 3518643
4637 618561
4638 456153
4639 3271605
4640 9476355
4641 16912905
4642 843513
4643 1731951
4644 10696527
4645 6674589
4646 4568985
4647 1770615
4648 6373395
4649 12272985
4650 3839943
4651 10306239
4652 1204413
4653 3015471
4654 1501695
4655 4660005
4656 2022153
4657 5488665
4658 27693627
4659 1974555
4660 2468793
4661 274485
4662 7936455
4663 671559
4664 16292997
4665 1568691
4666 29853837
4667 1767381
4668 3254925
4669 2587515
4670 9826197
4671 29267949
4672 2592765
4673 1610661
4674 364383
4675 5657511
4676 744087
4677 9793665
4678 2767773
4679 2435349
4680 3541767
4681 21542925
4682 4509945
4683 20813949
4684 5581557
4685 25355919
4686 2583765
4687 3273171
4688 6711765
4689 2079165
4690 2149413
4691 5378619
4692 14343543
4693 7119051
4694 8611383
4695 24459759
4696 7274517
4697 6030315
4698 66725397*
4699 1971459
4700 3345303
4701 19378215
4702 8215527
4703 27137481
4704 8067447
4705 413001
4706 2347887
4707 12500679
4708 7416597
4709 7331709
4710 1691193
4711 5119785
4712 7183785
4713 7160361
4714 2645565
4715 2847939
4716 20119953
4717 27154521
4718 13174755
4719 6193029
4720 10987347
4721 3224529
4722 3988467
4723 11775741
4724 8663823
4725 14309379
4726 3324375
4727 16026135
4728 1133517
4729 3920019
4730 14581893
4731 2763609
4732 906165
4733 12494985
4734 6378123
4735 2055711
4736 4940103
4737 16994625
4738 637155
4739 7695141
4740 12691245
4741 5735535
4742 9325557
4743 143439
4744 14714415
4745 6004929
4746 134433
4747 8525805
4748 1417275
4749 4257195
4750 14069277
4751 2299539
4752 8618823
4753 2975379
4754 203253
4755 8980125
4756 4798935
4757 1532691
4758 2070003
4759 6352995
4760 3991557
4761 1441095
4762 4768083
4763 1290405
4764 13029837
4765 7039881
4766 5765817
4767 11413689
4768 15722433
4769 1354581
4770 3297045
4771 11341899
4772 2357793
4773 2172261
4774 9267837
4775 2545341
4776 6984633
4777 5537049
4778 1284093
4779 12115569
4780 1597365
4781 2727585
4782 18460983
4783 4625469
4784 1025403
4785 6666051
4786 8765583
4787 74565
4788 26335185
4789 12161865
4790 2964297
4791 3379869
4792 991347
4793 1475919
4794 7784385
4795 25337691
4796 7295385
4797 2502735
4798 6126057
4799 4023261
4800 11252973
4801 1120701
4802 732327
4803 963039
4804 6481305
4805 3208845
4806 22019655
4807 8981469
4808 7942635
4809 10768179
4810 1577547
4811 6326685
4812 18641415
4813 3358509
4814 22625133
4815 19246995
4816 26440797
4817 3490155
4818 2107287
4819 11603031
4820 6648543
4821 2900691
4822 8791755
4823 20476011
4824 16484127
4825 2501799
4826 15078867
4827 1282755
4828 3638523
4829 10793049
4830 3742263
4831 7415541
4832 622497
4833 1024389
4834 1386357
4835 7787025
4836 429993
4837 144249
4838 12707073
4839 6552459
4840 4175715
4841 28587261
4842 3666075
4843 26010669
4844 26548563
4845 8656371
4846 15123837
4847 1440495
4848 24098343
4849 6213075
4850 866445
4851 2867559
4852 4038993
4853 5986551
4854 31056513
4855 7335585
4856 34814637
4857 17719305
4858 4574505
4859 4362975
4860 8067087
4861 10488015
4862 11986017
4863 1494729
4864 11661705
4865 5600241
4866 938565
4867 5065881
4868 13326825
4869 947229
4870 6740505
4871 2969739
4872 21553917
4873 9951669
4874 2882697
4875 36656655
4876 6549243
4877 7966575
4878 7465395
4879 4358019
4880 442593
4881 3123519
4882 3151407
4883 6706479
4884 22767
4885 1847511
4886 22505223
4887 800109
4888 13397595
4889 3926919
4890 13076373
4891 5602605
4892 15356907
4893 1445295
4894 3269007
4895 2834625
4896 5064003
4897 1433691
4898 11555667
4899 5602041
4900 5652675
4901 2565
4902 1243923
4903 7230669
4904 37819947
4905 9718371
4906 17463207
4907 15869811
4908 10184727
4909 12373941
4910 11616003
4911 111885
4912 42343545
4913 7248189
4914 7325685
4915 8774751
4916 3337683
4917 2763939
4918 13608603
4919 8808645
4920 18012753
4921 3451119
4922 514545
4923 4562481
4924 12797283
4925 14017119
4926 3407205
4927 5049735
4928 13078323
4929 13039455
4930 14661003
4931 1174485
4932 433983
4933 218325
4934 2202735
4935 730755
4936 10073517
4937 14903361
4938 3608973
4939 14440995
4940 3560817
4941 575601
4942 1229493
4943 13010409
4944 22354365
4945 5402601
4946 17615433
4947 2566245
4948 11933637
4949 2386209
4950 11668863
4951 2242011
4952 3527595
4953 903411
4954 7987455
4955 2346735
4956 3434685
4957 28524351
4958 7079163
4959 3698835
4960 23016237
4961 918765
4962 5027265
4963 16934049
4964 4950315
4965 5701215
4966 8250747
4967 4188279
4968 20488125
4969 1751919
4970 381273
4971 11855175
4972 9754107
4973 1807845
4974 2537505
4975 6104415
4976 718665
4977 33114849
4978 13417515
4979 6874809
4980 5286603
4981 5153391
4982 1898415
4983 6773505
4984 14809737
4985 2071551
4986 2672133
4987 4554615
4988 12744243
4989 12815919
4990 7486395
4991 1950675
4992 416343
4993 6694449
4994 5367237
4995 886461
4996 9677493
4997 31569
4998 2455005
4999 8130255
5000 5852235


[/CODE]

roger 2008-03-31 05:16

Wow, I wish I had your computer farm :razz: I'm afraid I only have a single 2Gb laptop, but am running an the batch files on both cores. It's still going slowly, but picking up as I have increased the kmax and with the stoponsuccess. With kmax=50M, it looks like around 70-90% of n's have verified twins.

Cybertronic 2008-03-31 10:55

cnewpgen
 
Hello, how I get the program cnewpgen ? You can also send this file to
[email]nluhn@yahoo.de[/email]. Perhaps I look for n between 10000 and 10200

Thanks!

robert44444uk 2008-03-31 12:19

[QUOTE=Cybertronic;130338]Hello, how I get the program cnewpgen ?

Thanks![/QUOTE]

Norman, see post #58 in this thread

Cybertronic 2008-03-31 12:47

Thanks.. I will try n=10000 to 10200 . okay ?

kar_bon 2008-03-31 14:47

i updated the page with all results upto n=5000 and marked the champions too.

MooMoo2 2008-03-31 19:22

[QUOTE=gd_barnes;130153]it makes more sense to search a much smaller range of k over a range of n instead of doing a fixed-n search[/QUOTE]
If you want TPS to abandon our fixed-n search after finding a prime for n=333333, you'll need to:

1.) Suggest the range of k and n that you think makes sense.
2.) Provide a program that can search the whole range of k and n at once. NewPGen won't work because either the k or the n value has to be fixed.

[QUOTE]
I thought TPS was going to do a fixed-n twin search on n=500K.
[/QUOTE]
That was the original plan, but I'm willing to change it even after doing some sieving on n=500K.

paulunderwood 2008-03-31 19:41

Whatever "k" and "n" you look at, simultaneously searching with a "[URL="http://tech.groups.yahoo.com/group/primeform/message/8721"]quadruple sieve[/URL]" for [URL="http://primes.utm.edu/top20/"]archivable forms[/URL] "[URL="http://primes.utm.edu/top20/page.php?id=1"]twin primes[/URL]" and "[URL="http://primes.utm.edu/top20/page.php?id=2"]Sophie Germain primes[/URL]" is the right thing to do IMHO. :geek:

Cybertronic 2008-03-31 21:16

I go back to my old project. Here the results.

n k
10000 10642317
10001 8590875
10002 2481813
10003 12176169
10004 10808517
10005 3257595
10006 12110457
10007 1374729
10008 227547
10009 14244069
10010 >33M
10011 >33M
10012 >33M

roger 2008-04-01 04:29

1 Attachment(s)
I stitched the posts above into one excel chart and graphed them, with and without my data. I added a trendline, and the equations turned out to be (averages):
k=0.2973*n^1.9555 [for data of n=1->5000, no gaps]
k=0.3823*n^1.9191 [for data of n=1->10000, with gaps]

Attached is the excel file.

robert44444uk 2008-04-01 05:53

[QUOTE=roger;130438]I stitched the posts above into one excel chart and graphed them, with and without my data. I added a trendline, and the equations turned out to be (averages):
k=0.2973*n^1.9555 [for data of n=1->5000, no gaps]
k=0.3823*n^1.9191 [for data of n=1->10000, with gaps]

Attached is the excel file.[/QUOTE]

This accords with my findings, but Bob Silverman guided me to retrofit to theory, which deal with A*n^2, with A a variable or a constant, and it was also concluded that we should look at medians rather than averages - try to place the values in percentiles over a block of n and you will see that the rogue values have a large influence over the average.

When you look at A constant, the data fits quite well to A=0.24.

You might want to try to plot Norman's formula that he suggested a couple of days ago.

robert44444uk 2008-04-01 06:05

[QUOTE=MooooMoo;130396]If you want TPS to abandon our fixed-n search after finding a prime for n=333333, you'll need to:

1.) Suggest the range of k and n that you think makes sense.
2.) Provide a program that can search the whole range of k and n at once. NewPGen won't work because either the k or the n value has to be fixed.


That was the original plan, but I'm willing to change it even after doing some sieving on n=500K.[/QUOTE]

MooooMoo I hope the work we are doing here will be persuasive, it is not our purpose to "want" you to abandon.

My choice, to be further analysed was posted on 29th March in this thread, but before this approach could be adopted, then I would want (if I was you) some comfort that this bottom slicing approach would work, and I suggested a test at the 30000 level, in the same post. If we are able to find an twin in the very narrow bounds of k suggested, it might give you confidence in the approach.

In terms of distributed effort, I don't know if there are sieves out there that can attack 1000 n at a time, over a fixed range of k. So the approach might be to sieve with a program that provides the maximum range of n, set up a series of parallel sieves, then start to prp the results.

This is still in its infancy as an approach, and our objective is to provide a sound footing for any attack on the twin prime record.

roger 2008-04-01 21:12

I'm working on finding the 90th or 95th percentile of where these twins fall on the graph. That should reduce the range of k's to search somewhat, or at least be of passing interest.

Will post the results in a few hours I think

robert44444uk 2008-04-02 03:16

[QUOTE=roger;130510]I'm working on finding the 90th or 95th percentile of where these twins fall on the graph. That should reduce the range of k's to search somewhat, or at least be of passing interest.

Will post the results in a few hours I think[/QUOTE]

Roger

You may wish to look at message #12 on
[url]http://www.mersenneforum.org/showthread.php?p=130510#post130510[/url]
where I had analysed blocks of 100 by decile.

roger 2008-04-02 06:19

Post #12 seems to be written by MooooMoo...

robert44444uk 2008-04-02 13:22

[QUOTE=roger;130525]Post #12 seems to be written by MooooMoo...[/QUOTE]

Sorry

Try this link

[url]http://www.mersenneforum.org/showthread.php?t=10063[/url]

gd_barnes 2008-04-03 04:55

[quote=MooooMoo;130396]If you want TPS to abandon our fixed-n search after finding a prime for n=333333, you'll need to:

1.) Suggest the range of k and n that you think makes sense.
2.) Provide a program that can search the whole range of k and n at once. NewPGen won't work because either the k or the n value has to be fixed.


That was the original plan, but I'm willing to change it even after doing some sieving on n=500K.[/quote]

First, I don't suggest waiting for n=333333 to find a twin. The chances of you finding a twin are no greater now than when you started regardless of what has already been tested. Interest will wane once the last n=333333 prime has dropped off of top-5000. I've seen it already waning. Essentially the same sized prime gets boring after a while.

Suggestions:

1.) n=350K-450K

2.) k=3 to 2M (odd values only); that's a starting value of three, not three million.

3.) Sieving: NewPGen with the increment counter set on. In a distributed effort, have people reserve n-value ranges instead of P-values for sieving. Determine ahead of time what the optimum sieve depth is and have everyone sieve to the same depth; increasing moderately as you go up by n-value.

Number of possible candidates: 100K * 1M = 100G.

Number of candidates from your n=333333 search assuming a top k-value of 100G: 50G

The above is exactly what I'm doing to create the 'all twin pages' that I've done so far to n=~36K. (I've temporarily stopped the effort for about the last 5-6 weeks but have sieved up to n=50K. Will start again in ~1-2 weeks.) Sieving 1 n-value at a time is far more effective than it looks at a glance. Low k-values LLR MUCH MUCH faster. IMHO, fixed-n searches should not be done in the future unless there is an improvement to LLRing high k-values.

Despite this, if you still decide to do a fixed-n search, do EVEN AND ODD k's. That's what I did to find my 2 top-5 prime quadruplets; one which is for n=3800 and the other for n=3802. I sieved all n=3800 but one of the k's was divisible by 4 so it was reduced and n increased by 2. Once again, it's about efficiency. You may as well get twice the k-values within the same range. I can't think of a reason to limit it to odd k-values if you're doing a fixed-n search.

The above quad search wasn't very efficient because I sieved something like k=3 to 5T!! I was still ignorant. I should have taken what I'm suggesting above and sieved across 1000n up to about k=5G. 10-digit k's would have been bad enough in that search but 13-digit k's that I ended up testing in the actual search are ridiculous when LLRing.

NOW...all of this said, if you can convince people to search with no reward of top-5000 primes, I agree with what some others have suggested here: Do n=200K instead. Or to be consistent with what I suggested above, do n=200K-300K with an appropriate k-range that gives you ~90% chance of finding a twin.


Gary

Kosmaj 2008-04-04 00:42

I'll be willing to help TPS at n=333,333 once the dust settles, and all reported primes drop from the Top-5000 list. Moo-moo, can you remind us how far have you sieved, I assume at least to 1000T?

MooMoo2 2008-04-04 00:48

[QUOTE=gd_barnes;130597]First, I don't suggest waiting for n=333333 to find a twin. The chances of you finding a twin are no greater now than when you started regardless of what has already been tested. Interest will wane once the last n=333333 prime has dropped off of top-5000. I've seen it already waning. Essentially the same sized prime gets boring after a while.
[/QUOTE]
TPS/PG will be staying on n=333,333 as long as there are still some of those primes on the top 5000 list. I'll only consider switching to a broad n-range once all of the n=333,333 primes have dropped off the list.

But it isn't likely that we'll be moving away from n=333,333 immediately after the last n=333,333 prime has dropped off. We've sieved a huge range for that n (1-100G), and I don't want to let most of it go to waste.

[QUOTE]
Suggestions:

1.) n=350K-450K

2.) k=3 to 2M (odd values only); that's a starting value of three, not three million.
[/QUOTE]
In a previous poll: [url]http://www.mersenneforum.org/showthread.php?t=69743[/url]

most people said that they wanted to search n's between n=460K and n=520K after finding a twin for n=333333. Therefore, I'll probably pick the range n=430K-530K and a k range from 3 to 3M, to account for the higher n-range.

[QUOTE]
3.) Sieving: NewPGen with the increment counter set on. In a distributed effort, have people reserve n-value ranges instead of P-values for sieving. Determine ahead of time what the optimum sieve depth is and have everyone sieve to the same depth; increasing moderately as you go up by n-value.
[/QUOTE]
Could you give us a quick guide on how to use NewPGen's increment counter? I'll see what a good sieve depth is after trying out some values.

MooMoo2 2008-04-04 00:52

[QUOTE=Kosmaj;130674]Moo-moo, can you remind us how far have you sieved, I assume at least to 1000T?[/QUOTE]
We've sieved a total of 4752T. All ranges below 4000T have been sieved, but there are some gaps between 4000T to 5500T.


All times are UTC. The time now is 13:38.

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.