![]() |
Hi, I think I'll pitch in a bit here as well.
Reserving n=8825 to n=10000, don't know how long it will take though... Is there any more efficient method than just using NewPGen for sieving with the auto-increase n and pfgw for testing? roger |
Hi Roger, happy for you to work at the far end of the first 10000 spectrum. I am doing this rather manually, I write a .bat file for cnewpgen that contains a 100 lines like:
cnewpgen -wp=02.txt -v -t=2 -base=2 -n=3108 -kmin=2 -kmax=5000000 -own -osp=5000000000 for a range of 100n This is newpgen for command line, and would create a file called 02.txt with k checked from 2 to 5 million, stopping at p=5 million for n=3108 and finish the .bat file with copy *.txt merged.log del *.txt //(you should be doing this in a subdirectory with no .txt files!!!) Then I run the .bat file through the DOS window and then run merged.log through LLR version 3.7 I extract the first twin found and then create another .bat file for those with no twins and check the next 5 million k cnewpgen -wp=02.txt -v -t=2 -base=2 -n=3108 -kmin=5000000 -kmax=10000000 -own -osp=5000000000 It would be nice to have a programme that linked the two activities cnewpgen and LLR, and for LLR to stop when it finds a twin. That would allow much larger cnewpgen files to be created and the whole thing to run uninterrupted |
[QUOTE=robert44444uk;129274]Hi Roger, happy for you to work at the far end of the first 10000 spectrum. I am doing this rather manually, I write a .bat file for cnewpgen that contains a 100 lines like:
cnewpgen -wp=02.txt -v -t=2 -base=2 -n=3108 -kmin=2 -kmax=5000000 -own -osp=5000000000 for a range of 100n This is newpgen for command line, and would create a file called 02.txt with k checked from 2 to 5 million, stopping at p=5 million for n=3108 and finish the .bat file with copy *.txt merged.log del *.txt //(you should be doing this in a subdirectory with no .txt files!!!) Then I run the .bat file through the DOS window and then run merged.log through LLR version 3.7 I extract the first twin found and then create another .bat file for those with no twins and check the next 5 million k cnewpgen -wp=02.txt -v -t=2 -base=2 -n=3108 -kmin=5000000 -kmax=10000000 -own -osp=5000000000 It would be nice to have a programme that linked the two activities cnewpgen and LLR, and for LLR to stop when it finds a twin. That would allow much larger cnewpgen files to be created and the whole thing to run uninterrupted[/QUOTE] Hi, LLR (or cllr) has an option to stop on success : add the line: StopOnSuccess=1 in the .ini file, or use cllr -oStopOnSuccess=1 Newpgen, or cnewpgen has an option to call PFGW when the stop condition is reached ; I could add the option to call another program, such as cllr, as soon as possible... Regards, Jean |
efficient method
i made two WIN-batches to do a range of k's with first twins:
this first batch (named 'do_range.bat') takes a range of k to determine and calls the second batch with parameter k (here the range from k=100 to k=120 will be done): [code] FOR /L %%k IN (100,1,120) DO call do_one.bat %%k [/code] the second (named 'do_one.bat') batch takes one k (parameter %1) and determine the first twin, makes a file with all results in '<k>_lresults.txt' and the twin in '<k>.res' and lists the twin found in 'all_twins.txt': [code] cnewpgen -wp=%1.npg -v -t=2 -base=2 -n=%1 -kmin=2 -kmax=5000000 -own -osp=5000000000 cllr -oStopOnSuccess=1 %1.npg ren lresults.txt %1_lresults.txt FOR /F "skip=1 tokens=1,2" %%i in (%1.res) DO @echo %%j %%i >>all_twins.txt [/code] modifications: - call the second batch with parameter for kmax and/or pmax other values like 'call do_one.bat %%k 20000000 3000000000' and edit the second batch first line in '(...) -kmin=2 -kmax=%2 -own -osp=%3' - all found twins will be stored in 'all_twins.txt' so the other files are not needed anymore. append a delete in the second batch: [code] del %1.npg %1.res %1_lresults.txt [/code] next step is to check if a twin was found. if not do another n-range for this k. hope this helps! happy hunting :grin: karsten |
Sorry, I am incredibly thick, but where do you get cllr from, it is not on Jean's LLR download page
|
[quote=robert44444uk;129322]Sorry, I am incredibly thick, but where do you get cllr from, it is not on Jean's LLR download page[/quote]
It's listed as "LLR 3.7.1c, Windows command line version". :smile: It's essentially Linux LLR, but compiled for Windows (so it has all the command-line functions instead of the GUI, and thus is more suitable for being driven by a script.) |
Brilliant, thanks, was looking on the wrong page on Jean's site
|
And here is the list from 3000 to 4000
I am well on the way from 4000 to 6000 with the automated code provided by Karsten, thank you for that, works like a dream. At some stage I need to recheck 1000 to 4000 which did not use the automated code. [CODE] 3001 11327799 3002 1778253 3003 1228629 3004 57267 3005 4266951 3006 5456133 3007 2224539 3008 4473543 3009 4801101 3010 877683 3011 4739259 3012 7339713 3013 1022649 3014 713397 3015 1964121 3016 4105647 3017 5559 3018 2289465 3019 8539635 3020 683067 3021 5840355 3022 1794267 3023 940701 3024 18221067* 3025 1645569 3026 5786403 3027 352725 3028 5748195 3029 752385 3030 4376367 3031 856821 3032 1102707 3033 9239505 3034 762747 3035 5483421 3036 10970487 3037 3655371 3038 1088283 3039 962241 3040 1107615 3041 480039 3042 1994403 3043 6655221 3044 906315 3045 491775 3046 3854685 3047 477081 3048 1778775 3049 206379 3050 539007 3051 2204871 3052 8402763 3053 6772875 3054 513807 3055 1130211 3056 1183083 3057 798849 3058 1094667 3059 2196411 3060 3037767 3061 1944705 3062 4358805 3063 13991565 3064 5439987 3065 1183281 3066 1015245 3067 11058201 3068 441927 3069 773481 3070 2701977 3071 454065 3072 2380107 3073 5862771 3074 90705 3075 1149405 3076 5134215 3077 2384571 3078 496377 3079 2197749 3080 2605137 3081 19703565* 3082 497457 3083 1676619 3084 1740963 3085 653721 3086 1652493 3087 4630311 3088 1145373 3089 3498249 3090 1789533 3091 1590171 3092 7180893 3093 5691159 3094 1868853 3095 9388239 3096 1828047 3097 2913681 3098 1129173 3099 1856661 3100 1103985 3101 1631535 3102 765063 3103 3953985 3104 58143 3105 1948095 3106 1795197 3107 309561 3108 5026887 3109 5350731 3110 6887175 3111 1590039 3112 450735 3113 2419425 3114 1938765 3115 4567785 3116 5099007 3117 496479 3118 3543135 3119 13625325 3120 2047533 3121 6107235 3122 809367 3123 8354685 3124 7728117 3125 241455 3126 2477823 3127 2886675 3128 1651593 3129 2370669 3130 2248785 3131 8646975 3132 383505 3133 4011981 3134 464205 3135 7882395 3136 984717 3137 1379685 3138 3811017 3139 2726079 3140 15630843 3141 3922149 3142 1658103 3143 954759 3144 549057 3145 1406259 3146 2326785 3147 505995 3148 9680385 3149 2541885 3150 5548827 3151 779781 3152 446583 3153 5462559 3154 4618833 3155 2680005 3156 3039447 3157 846531 3158 11184363 3159 4404729 3160 3632445 3161 5644779 3162 1747365 3163 2523519 3164 5062557 3165 2799249 3166 1497537 3167 2585829 3168 5876553 3169 4788369 3170 935955 3171 3218091 3172 3946545 3173 883935 3174 2259183 3175 1039635 3176 3854235 3177 8884479 3178 10648245 3179 41205 3180 1322913 3181 2193381 3182 2402883 3183 6439521 3184 4259613 3185 619011 3186 5678823 3187 1537821 3188 3136983 3189 6050265 3190 386727 3191 1740705 3192 1504617 3193 1254615 3194 4940457 3195 2211135 3196 2722173 3197 11827029 3198 7151895 3199 4207401 3200 7398465 3201 4461975 3202 10062717 3203 3171771 3204 1524645 3205 2049525 3206 5548497 3207 739581 3208 3511683 3209 260019 3210 6222993 3211 298965 3212 4527783 3213 1831191 3214 1210623 3215 43095 3216 778845 3217 2851371 3218 1339197 3219 1755141 3220 1828227 3221 3487221 3222 440937 3223 2243331 3224 5077743 3225 530649 3226 4166037 3227 803919 3228 1568847 3229 49449 3230 1827027 3231 5412141 3232 7204995 3233 4335201 3234 1335987 3235 401625 3236 17617383 3237 3673605 3238 2342415 3239 6042315 3240 171195 3241 17263281 3242 896697 3243 2027349 3244 2780367 3245 6265311 3246 1646235 3247 1524819 3248 4659897 3249 1811199 3250 2445885 3251 1378101 3252 2788275 3253 4794165 3254 3638265 3255 4167849 3256 1868277 3257 688761 3258 1274457 3259 646245 3260 2544633 3261 9907545 3262 6993903 3263 11213535 3264 4938003 3265 859479 3266 10618413 3267 2066649 3268 6828453 3269 4123479 3270 2393823 3271 1322985 3272 1603773 3273 4133805 3274 1165143 3275 4763205 3276 1414233 3277 540645 3278 2790477 3279 5075961 3280 9053913 3281 1038855 3282 2311563 3283 1149 3284 5411685 3285 10112589 3286 6481113 3287 189675 3288 6339525 3289 4826541 3290 2308215 3291 11034189 3292 311823 3293 1014675 3294 4391343 3295 2058225 3296 4023837 3297 6713031 3298 1230063 3299 11068569 3300 7820355 3301 220341 3302 4873485 3303 1563705 3304 5631213 3305 750879 3306 793707 3307 15529215 3308 3006795 3309 10797021 3310 2324205 3311 10376619 3312 3336837 3313 417921 3314 8371203 3315 521349 3316 4882893 3317 7492965 3318 608235 3319 2201625 3320 6462663 3321 7647699 3322 271875 3323 820161 3324 1176357 3325 18640221 3326 6551943 3327 16468035 3328 4485795 3329 579855 3330 1556667 3331 2406231 3332 2928765 3333 1645875 3334 490953 3335 8920941 3336 310923 3337 681801 3338 2081283 3339 651639 3340 2048103 3341 935715 3342 8651907 3343 4449759 3344 217827 3345 8565309 3346 4936275 3347 4920285 3348 1291587 3349 18933489 3350 16340397 3351 1667811 3352 3221505 3353 5795565 3354 754953 3355 4393605 3356 10937847 3357 327435 3358 441345 3359 1111065 3360 5813973 3361 4535475 3362 2416863 3363 9429459 3364 11125317 3365 2155839 3366 4065105 3367 8383731 3368 646215 3369 1131615 3370 1511637 3371 8086005 3372 655347 3373 2853069 3374 11505843 3375 13462209 3376 11596695 3377 8702205 3378 6362787 3379 6095235 3380 966897 3381 2310021 3382 5008185 3383 12774891 3384 13691535 3385 1518249 3386 1082763 3387 3354165 3388 14234487 3389 6531651 3390 2800317 3391 697425 3392 1836723 3393 3689871 3394 5157615 3395 10154229 3396 10408485 3397 7044555 3398 8125617 3399 2255199 3400 1466247 3401 8338635 3402 319863 3403 10669995 3404 8443023 3405 1424409 3406 4801155 3407 1057101 3408 788655 3409 1476711 3410 380883 3411 608121 3412 1292913 3413 335019 3414 1541127 3415 7469775 3416 234417 3417 5444175 3418 5881743 3419 8471001 3420 196443 3421 4026465 3422 7596177 3423 1475355 3424 4192383 3425 4892985 3426 34365 3427 1231251 3428 929337 3429 3840645 3430 1783413 3431 2004831 3432 118683 3433 744735 3434 6051387 3435 4299981 3436 2392623 3437 6429639 3438 2536875 3439 1794771 3440 465447 3441 16641231 3442 4873815 3443 529491 3444 5970255 3445 9157905 3446 1762617 3447 21868521* 3448 7103535 3449 6075495 3450 7639767 3451 3663801 3452 3164127 3453 498405 3454 1470195 3455 21776115 3456 1008873 3457 2283045 3458 5914947 3459 2347965 3460 2403 3461 9759795 3462 3798273 3463 5982039 3464 1292427 3465 437661 3466 3143433 3467 457239 3468 1637043 3469 8104971 3470 2870433 3471 1506459 3472 1757043 3473 3246645 3474 4450677 3475 2877495 3476 2012343 3477 136101 3478 2741835 3479 3209121 3480 834543 3481 2822259 3482 6361023 3483 4127931 3484 234627 3485 11344311 3486 1664205 3487 11405631 3488 3978573 3489 7706475 3490 1479987 3491 7264071 3492 3082215 3493 1117509 3494 169113 3495 3745065 3496 10908093 3497 298269 3498 2453475 3499 578271 3500 3420243 3501 3764295 3502 1102095 3503 83331 3504 11214327 3505 5803065 3506 18678603 3507 8350209 3508 11915847 3509 14353455 3510 3388455 3511 11006571 3512 1786707 3513 4895355 3514 2641665 3515 2094345 3516 1528053 3517 8807955 3518 1141893 3519 3658749 3520 4023957 3521 6055755 3522 536007 3523 2515149 3524 3922713 3525 2786595 3526 2748705 3527 10102011 3528 3368745 3529 2335251 3530 3694947 3531 1761069 3532 3793827 3533 320949 3534 311853 3535 5826549 3536 30030213* 3537 5817735 3538 10338573 3539 490725 3540 906087 3541 16079481 3542 1675425 3543 7060419 3544 10574367 3545 2110749 3546 7949403 3547 5425035 3548 4554465 3549 1049835 3550 4167927 3551 36159 3552 5602833 3553 4845 3554 1116633 3555 2448141 3556 3248883 3557 9527571 3558 13819515 3559 5143929 3560 821355 3561 4781319 3562 7074795 3563 3244389 3564 4943883 3565 3059691 3566 1447125 3567 9316485 3568 3355737 3569 1028079 3570 9272205 3571 1195545 3572 3210267 3573 2469555 3574 3513405 3575 3213129 3576 943653 3577 8409975 3578 8154345 3579 4391349 3580 5231913 3581 4037565 3582 632973 3583 6762285 3584 1909995 3585 757221 3586 1052547 3587 51591 3588 1436745 3589 1394499 3590 1838493 3591 1446441 3592 7545525 3593 4959795 3594 358197 3595 3686529 3596 2835105 3597 3291675 3598 2741643 3599 3672369 3600 11381697 3601 88311 3602 5226843 3603 13421469 3604 763383 3605 20265291 3606 866043 3607 2063979 3608 14246805 3609 551451 3610 3024513 3611 6735105 3612 2109657 3613 8030661 3614 15164145 3615 1871769 3616 101793 3617 3834831 3618 867813 3619 4734219 3620 7564407 3621 7426851 3622 1832397 3623 4553451 3624 3902925 3625 7138629 3626 183207 3627 1829571 3628 1279137 3629 2972571 3630 3578055 3631 695505 3632 1570197 3633 4747521 3634 218217 3635 7624971 3636 4811265 3637 10434111 3638 10060095 3639 6018639 3640 1685697 3641 69069 3642 3377103 3643 722799 3644 4764225 3645 17551545 3646 40713 3647 871161 3648 3743103 3649 3035499 3650 9300423 3651 13100145 3652 5785683 3653 1117161 3654 3012093 3655 5727045 3656 8689317 3657 4655859 3658 5240325 3659 2613771 3660 2691477 3661 1396761 3662 1336947 3663 7134459 3664 2071407 3665 1586931 3666 1117755 3667 3701949 3668 6270057 3669 5194479 3670 470445 3671 879915 3672 3355863 3673 3868779 3674 5384637 3675 2319609 3676 995223 3677 1140441 3678 2556123 3679 3380589 3680 2764605 3681 1761519 3682 467817 3683 3504579 3684 3103173 3685 1513065 3686 654837 3687 5218449 3688 1863423 3689 22770201 3690 3466515 3691 1159935 3692 23318625 3693 865035 3694 3506907 3695 2542575 3696 149307 3697 1861239 3698 581703 3699 251949 3700 3348087 3701 7300875 3702 6583287 3703 11884431 3704 864753 3705 11780661 3706 1586163 3707 799701 3708 1634535 3709 3200829 3710 5050125 3711 1274625 3712 14894643 3713 4712235 3714 1193253 3715 1290339 3716 4448613 3717 1342059 3718 6272373 3719 1553145 3720 11276415 3721 24377115 3722 5373 3723 2303775 3724 256983 3725 9673581 3726 731085 3727 10665585 3728 1627305 3729 5389029 3730 1094247 3731 2147445 3732 5120325 3733 11700555 3734 3075747 3735 16801449 3736 10925907 3737 758229 3738 582225 3739 226821 3740 6842415 3741 4527345 3742 12438273 3743 11021475 3744 5235087 3745 567699 3746 6729237 3747 6554559 3748 2907567 3749 1642299 3750 2696313 3751 1345359 3752 11093967 3753 11828379 3754 5246373 3755 310281 3756 6747213 3757 1090341 3758 5244135 3759 1357419 3760 647493 3761 10306425 3762 7019337 3763 4186665 3764 1101783 3765 8613621 3766 13109175 3767 4098219 3768 7917255 3769 1413375 3770 3654585 3771 766965 3772 311205 3773 3171081 3774 3713133 3775 4844259 3776 5110785 3777 5264931 3778 15195945 3779 6132525 3780 884655 3781 630279 3782 6374487 3783 12981315 3784 337287 3785 7909695 3786 7116945 3787 4048815 3788 2898183 3789 12112959 3790 1394595 3791 1356429 3792 4871577 3793 602649 3794 1688715 3795 6195945 3796 1468707 3797 6810159 3798 7056423 3799 1500339 3800 10236867 3801 14672469 3802 7185183 3803 6276081 3804 5248563 3805 3696951 3806 541485 3807 16553439 3808 323955 3809 9581631 3810 3270423 3811 3471609 3812 3319245 3813 178245 3814 16093533 3815 12826059 3816 1638747 3817 2902641 3818 2791167 3819 356421 3820 2576775 3821 1790649 3822 5221407 3823 583305 3824 3079317 3825 860391 3826 4935 3827 6557859 3828 8774805 3829 2560185 3830 21417 3831 2191599 3832 7320285 3833 26671995 3834 1924713 3835 8765391 3836 14845167 3837 4664331 3838 515157 3839 7250265 3840 1840935 3841 17154411 3842 10969077 3843 4657389 3844 3903135 3845 433125 3846 24015 3847 3122355 3848 3970305 3849 614241 3850 1114503 3851 5460651 3852 8561115 3853 1405425 3854 16622085 3855 345975 3856 12845043 3857 313425 3858 6067215 3859 10665879 3860 3436173 3861 15938241 3862 4307835 3863 11008731 3864 3198135 3865 11608029 3866 6879243 3867 31539 3868 2401203 3869 727485 3870 4268667 3871 6845475 3872 3763395 3873 88071 3874 3109155 3875 6900405 3876 3830265 3877 4271889 3878 804993 3879 851319 3880 2025897 3881 6122841 3882 7790097 3883 3274959 3884 2825067 3885 583215 3886 1371495 3887 704739 3888 1150803 3889 4750881 3890 163713 3891 80661 3892 4168257 3893 13037079 3894 7722837 3895 2644749 3896 6221445 3897 1991259 3898 2168025 3899 2822931 3900 2592915 3901 956271 3902 10436037 3903 16066479 3904 868533 3905 10067649 3906 19038357 3907 5179959 3908 6706725 3909 558999 3910 5138097 3911 5984979 3912 183447 3913 2684409 3914 2158167 3915 458631 3916 387603 3917 168675 3918 897867 3919 3219945 3920 1848927 3921 668061 3922 21628257 3923 653559 3924 5505147 3925 5991099 3926 6394893 3927 488721 3928 695703 3929 1724961 3930 3839253 3931 10069089 3932 1756443 3933 1135071 3934 1346967 3935 7439481 3936 884775 3937 4559961 3938 986205 3939 833271 3940 437487 3941 760449 3942 34407 3943 4179405 3944 778305 3945 1185681 3946 4312245 3947 2862591 3948 2280063 3949 3054765 3950 1696317 3951 2821191 3952 7339773 3953 3097815 3954 7194483 3955 6812415 3956 6337785 3957 3683241 3958 3434685 3959 4097649 3960 1203207 3961 10633029 3962 1316613 3963 1068609 3964 1243293 3965 1080099 3966 653685 3967 4908591 3968 6922125 3969 13950291 3970 4853193 3971 5027079 3972 13371057 3973 1099329 3974 10041783 3975 11829141 3976 7373997 3977 1169811 3978 6481113 3979 2615559 3980 3727485 3981 2637075 3982 7703085 3983 20695455 3984 24731145 3985 11197851 3986 13448553 3987 1152459 3988 541437 3989 49455 3990 2894133 3991 8764455 3992 1254585 3993 1886619 3994 6410487 3995 1657929 3996 2346255 3997 8545521 3998 2564187 3999 9635589 4000 2515263 [/CODE] |
[QUOTE=robert44444uk;128009]Gary/ Karsten
Results of first instance primes to 1400 show a rather nice curve when plotting ln(k/n) against n. Best fit looks to be logarithmic as well. Would be interested to know if this might be a good way to target large twins. For example, [U]if[/U] the extrapolation of the best fit to n=333333, gave A= ln(k/n)= 9, then the first twin would be, on average, at k=2.70103*10^9 then the test might look at n from 333333 to n 333433, say at A=8.999 to 9.001 or k=2.69833*10^9 to 2.70373*10^9. A 50 million k range, sieved to 1T would provide about 4,000 candidates for prime checking or 400,000 overall for a 100 k range. [/QUOTE] Values within x% either side of the of the forecasted first value for each of the first 4000n: 1% 20 2% 56 3% 84 4% 109 5% 145 6% 168 7% 192 8% 215 9% 238 10% 261 No apparent abnormal density factors at play here |
Where can I get this automated code Karsten did?
Unfortunately, my range is going slowly, as I have only found 55 (5%), and sieved for 390 (33%). It should improve as my search continues, when it is more organized :redface: roger |
data for n upto 4000 are online!
to roger: to get the scripts look some posts above! |
| All times are UTC. The time now is 13:38. |
Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.