mersenneforum.org

mersenneforum.org (https://www.mersenneforum.org/index.php)
-   Twin Prime Search (https://www.mersenneforum.org/forumdisplay.php?f=65)
-   -   List of most small twins of form k*2^n+/-1 (https://www.mersenneforum.org/showthread.php?t=8479)

roger 2008-03-20 10:50

Hi, I think I'll pitch in a bit here as well.

Reserving n=8825 to n=10000, don't know how long it will take though...

Is there any more efficient method than just using NewPGen for sieving with the auto-increase n and pfgw for testing?

roger

robert44444uk 2008-03-20 12:08

Hi Roger, happy for you to work at the far end of the first 10000 spectrum. I am doing this rather manually, I write a .bat file for cnewpgen that contains a 100 lines like:

cnewpgen -wp=02.txt -v -t=2 -base=2 -n=3108 -kmin=2 -kmax=5000000 -own -osp=5000000000

for a range of 100n

This is newpgen for command line, and would create a file called 02.txt with k checked from 2 to 5 million, stopping at p=5 million for n=3108

and finish the .bat file with

copy *.txt merged.log
del *.txt //(you should be doing this in a subdirectory with no .txt files!!!)

Then I run the .bat file through the DOS window and then run merged.log through LLR version 3.7

I extract the first twin found and then create another .bat file for those with no twins and check the next 5 million k

cnewpgen -wp=02.txt -v -t=2 -base=2 -n=3108 -kmin=5000000 -kmax=10000000 -own -osp=5000000000

It would be nice to have a programme that linked the two activities cnewpgen and LLR, and for LLR to stop when it finds a twin. That would allow much larger cnewpgen files to be created and the whole thing to run uninterrupted

Jean Penné 2008-03-20 16:28

[QUOTE=robert44444uk;129274]Hi Roger, happy for you to work at the far end of the first 10000 spectrum. I am doing this rather manually, I write a .bat file for cnewpgen that contains a 100 lines like:

cnewpgen -wp=02.txt -v -t=2 -base=2 -n=3108 -kmin=2 -kmax=5000000 -own -osp=5000000000

for a range of 100n

This is newpgen for command line, and would create a file called 02.txt with k checked from 2 to 5 million, stopping at p=5 million for n=3108

and finish the .bat file with

copy *.txt merged.log
del *.txt //(you should be doing this in a subdirectory with no .txt files!!!)

Then I run the .bat file through the DOS window and then run merged.log through LLR version 3.7

I extract the first twin found and then create another .bat file for those with no twins and check the next 5 million k

cnewpgen -wp=02.txt -v -t=2 -base=2 -n=3108 -kmin=5000000 -kmax=10000000 -own -osp=5000000000

It would be nice to have a programme that linked the two activities cnewpgen and LLR, and for LLR to stop when it finds a twin. That would allow much larger cnewpgen files to be created and the whole thing to run uninterrupted[/QUOTE]

Hi,
LLR (or cllr) has an option to stop on success :

add the line:
StopOnSuccess=1
in the .ini file, or use
cllr -oStopOnSuccess=1

Newpgen, or cnewpgen has an option to call PFGW when the stop condition is reached ; I could add the option to call another program, such as cllr, as soon as possible...
Regards,
Jean

kar_bon 2008-03-21 01:10

efficient method
 
i made two WIN-batches to do a range of k's with first twins:

this first batch (named 'do_range.bat') takes a range of k to determine and calls the second batch with parameter k
(here the range from k=100 to k=120 will be done):
[code]
FOR /L %%k IN (100,1,120) DO call do_one.bat %%k
[/code]

the second (named 'do_one.bat') batch takes one k (parameter %1) and determine the first twin, makes a file with all results in '<k>_lresults.txt' and the twin in '<k>.res' and lists the twin found in 'all_twins.txt':
[code]
cnewpgen -wp=%1.npg -v -t=2 -base=2 -n=%1 -kmin=2 -kmax=5000000 -own -osp=5000000000
cllr -oStopOnSuccess=1 %1.npg
ren lresults.txt %1_lresults.txt
FOR /F "skip=1 tokens=1,2" %%i in (%1.res) DO @echo %%j %%i >>all_twins.txt
[/code]

modifications:

- call the second batch with parameter for kmax and/or pmax other values like 'call do_one.bat %%k 20000000 3000000000' and edit the second batch first line in '(...) -kmin=2 -kmax=%2 -own -osp=%3'

- all found twins will be stored in 'all_twins.txt' so the other files are not needed anymore.
append a delete in the second batch:
[code]
del %1.npg %1.res %1_lresults.txt
[/code]

next step is to check if a twin was found. if not do another n-range for this k.

hope this helps! happy hunting :grin:
karsten

robert44444uk 2008-03-21 02:51

Sorry, I am incredibly thick, but where do you get cllr from, it is not on Jean's LLR download page

mdettweiler 2008-03-21 04:52

[quote=robert44444uk;129322]Sorry, I am incredibly thick, but where do you get cllr from, it is not on Jean's LLR download page[/quote]
It's listed as "LLR 3.7.1c, Windows command line version". :smile: It's essentially Linux LLR, but compiled for Windows (so it has all the command-line functions instead of the GUI, and thus is more suitable for being driven by a script.)

robert44444uk 2008-03-21 06:14

Brilliant, thanks, was looking on the wrong page on Jean's site

robert44444uk 2008-03-24 09:45

And here is the list from 3000 to 4000

I am well on the way from 4000 to 6000 with the automated code provided by Karsten, thank you for that, works like a dream. At some stage I need to recheck 1000 to 4000 which did not use the automated code.

[CODE]

3001 11327799
3002 1778253
3003 1228629
3004 57267
3005 4266951
3006 5456133
3007 2224539
3008 4473543
3009 4801101
3010 877683
3011 4739259
3012 7339713
3013 1022649
3014 713397
3015 1964121
3016 4105647
3017 5559
3018 2289465
3019 8539635
3020 683067
3021 5840355
3022 1794267
3023 940701
3024 18221067*
3025 1645569
3026 5786403
3027 352725
3028 5748195
3029 752385
3030 4376367
3031 856821
3032 1102707
3033 9239505
3034 762747
3035 5483421
3036 10970487
3037 3655371
3038 1088283
3039 962241
3040 1107615
3041 480039
3042 1994403
3043 6655221
3044 906315
3045 491775
3046 3854685
3047 477081
3048 1778775
3049 206379
3050 539007
3051 2204871
3052 8402763
3053 6772875
3054 513807
3055 1130211
3056 1183083
3057 798849
3058 1094667
3059 2196411
3060 3037767
3061 1944705
3062 4358805
3063 13991565
3064 5439987
3065 1183281
3066 1015245
3067 11058201
3068 441927
3069 773481
3070 2701977
3071 454065
3072 2380107
3073 5862771
3074 90705
3075 1149405
3076 5134215
3077 2384571
3078 496377
3079 2197749
3080 2605137
3081 19703565*
3082 497457
3083 1676619
3084 1740963
3085 653721
3086 1652493
3087 4630311
3088 1145373
3089 3498249
3090 1789533
3091 1590171
3092 7180893
3093 5691159
3094 1868853
3095 9388239
3096 1828047
3097 2913681
3098 1129173
3099 1856661
3100 1103985
3101 1631535
3102 765063
3103 3953985
3104 58143
3105 1948095
3106 1795197
3107 309561
3108 5026887
3109 5350731
3110 6887175
3111 1590039
3112 450735
3113 2419425
3114 1938765
3115 4567785
3116 5099007
3117 496479
3118 3543135
3119 13625325
3120 2047533
3121 6107235
3122 809367
3123 8354685
3124 7728117
3125 241455
3126 2477823
3127 2886675
3128 1651593
3129 2370669
3130 2248785
3131 8646975
3132 383505
3133 4011981
3134 464205
3135 7882395
3136 984717
3137 1379685
3138 3811017
3139 2726079
3140 15630843
3141 3922149
3142 1658103
3143 954759
3144 549057
3145 1406259
3146 2326785
3147 505995
3148 9680385
3149 2541885
3150 5548827
3151 779781
3152 446583
3153 5462559
3154 4618833
3155 2680005
3156 3039447
3157 846531
3158 11184363
3159 4404729
3160 3632445
3161 5644779
3162 1747365
3163 2523519
3164 5062557
3165 2799249
3166 1497537
3167 2585829
3168 5876553
3169 4788369
3170 935955
3171 3218091
3172 3946545
3173 883935
3174 2259183
3175 1039635
3176 3854235
3177 8884479
3178 10648245
3179 41205
3180 1322913
3181 2193381
3182 2402883
3183 6439521
3184 4259613
3185 619011
3186 5678823
3187 1537821
3188 3136983
3189 6050265
3190 386727
3191 1740705
3192 1504617
3193 1254615
3194 4940457
3195 2211135
3196 2722173
3197 11827029
3198 7151895
3199 4207401
3200 7398465
3201 4461975
3202 10062717
3203 3171771
3204 1524645
3205 2049525
3206 5548497
3207 739581
3208 3511683
3209 260019
3210 6222993
3211 298965
3212 4527783
3213 1831191
3214 1210623
3215 43095
3216 778845
3217 2851371
3218 1339197
3219 1755141
3220 1828227
3221 3487221
3222 440937
3223 2243331
3224 5077743
3225 530649
3226 4166037
3227 803919
3228 1568847
3229 49449
3230 1827027
3231 5412141
3232 7204995
3233 4335201
3234 1335987
3235 401625
3236 17617383
3237 3673605
3238 2342415
3239 6042315
3240 171195
3241 17263281
3242 896697
3243 2027349
3244 2780367
3245 6265311
3246 1646235
3247 1524819
3248 4659897
3249 1811199
3250 2445885
3251 1378101
3252 2788275
3253 4794165
3254 3638265
3255 4167849
3256 1868277
3257 688761
3258 1274457
3259 646245
3260 2544633
3261 9907545
3262 6993903
3263 11213535
3264 4938003
3265 859479
3266 10618413
3267 2066649
3268 6828453
3269 4123479
3270 2393823
3271 1322985
3272 1603773
3273 4133805
3274 1165143
3275 4763205
3276 1414233
3277 540645
3278 2790477
3279 5075961
3280 9053913
3281 1038855
3282 2311563
3283 1149
3284 5411685
3285 10112589
3286 6481113
3287 189675
3288 6339525
3289 4826541
3290 2308215
3291 11034189
3292 311823
3293 1014675
3294 4391343
3295 2058225
3296 4023837
3297 6713031
3298 1230063
3299 11068569
3300 7820355
3301 220341
3302 4873485
3303 1563705
3304 5631213
3305 750879
3306 793707
3307 15529215
3308 3006795
3309 10797021
3310 2324205
3311 10376619
3312 3336837
3313 417921
3314 8371203
3315 521349
3316 4882893
3317 7492965
3318 608235
3319 2201625
3320 6462663
3321 7647699
3322 271875
3323 820161
3324 1176357
3325 18640221
3326 6551943
3327 16468035
3328 4485795
3329 579855
3330 1556667
3331 2406231
3332 2928765
3333 1645875
3334 490953
3335 8920941
3336 310923
3337 681801
3338 2081283
3339 651639
3340 2048103
3341 935715
3342 8651907
3343 4449759
3344 217827
3345 8565309
3346 4936275
3347 4920285
3348 1291587
3349 18933489
3350 16340397
3351 1667811
3352 3221505
3353 5795565
3354 754953
3355 4393605
3356 10937847
3357 327435
3358 441345
3359 1111065
3360 5813973
3361 4535475
3362 2416863
3363 9429459
3364 11125317
3365 2155839
3366 4065105
3367 8383731
3368 646215
3369 1131615
3370 1511637
3371 8086005
3372 655347
3373 2853069
3374 11505843
3375 13462209
3376 11596695
3377 8702205
3378 6362787
3379 6095235
3380 966897
3381 2310021
3382 5008185
3383 12774891
3384 13691535
3385 1518249
3386 1082763
3387 3354165
3388 14234487
3389 6531651
3390 2800317
3391 697425
3392 1836723
3393 3689871
3394 5157615
3395 10154229
3396 10408485
3397 7044555
3398 8125617
3399 2255199
3400 1466247
3401 8338635
3402 319863
3403 10669995
3404 8443023
3405 1424409
3406 4801155
3407 1057101
3408 788655
3409 1476711
3410 380883
3411 608121
3412 1292913
3413 335019
3414 1541127
3415 7469775
3416 234417
3417 5444175
3418 5881743
3419 8471001
3420 196443
3421 4026465
3422 7596177
3423 1475355
3424 4192383
3425 4892985
3426 34365
3427 1231251
3428 929337
3429 3840645
3430 1783413
3431 2004831
3432 118683
3433 744735
3434 6051387
3435 4299981
3436 2392623
3437 6429639
3438 2536875
3439 1794771
3440 465447
3441 16641231
3442 4873815
3443 529491
3444 5970255
3445 9157905
3446 1762617
3447 21868521*
3448 7103535
3449 6075495
3450 7639767
3451 3663801
3452 3164127
3453 498405
3454 1470195
3455 21776115
3456 1008873
3457 2283045
3458 5914947
3459 2347965
3460 2403
3461 9759795
3462 3798273
3463 5982039
3464 1292427
3465 437661
3466 3143433
3467 457239
3468 1637043
3469 8104971
3470 2870433
3471 1506459
3472 1757043
3473 3246645
3474 4450677
3475 2877495
3476 2012343
3477 136101
3478 2741835
3479 3209121
3480 834543
3481 2822259
3482 6361023
3483 4127931
3484 234627
3485 11344311
3486 1664205
3487 11405631
3488 3978573
3489 7706475
3490 1479987
3491 7264071
3492 3082215
3493 1117509
3494 169113
3495 3745065
3496 10908093
3497 298269
3498 2453475
3499 578271
3500 3420243
3501 3764295
3502 1102095
3503 83331
3504 11214327
3505 5803065
3506 18678603
3507 8350209
3508 11915847
3509 14353455
3510 3388455
3511 11006571
3512 1786707
3513 4895355
3514 2641665
3515 2094345
3516 1528053
3517 8807955
3518 1141893
3519 3658749
3520 4023957
3521 6055755
3522 536007
3523 2515149
3524 3922713
3525 2786595
3526 2748705
3527 10102011
3528 3368745
3529 2335251
3530 3694947
3531 1761069
3532 3793827
3533 320949
3534 311853
3535 5826549
3536 30030213*
3537 5817735
3538 10338573
3539 490725
3540 906087
3541 16079481
3542 1675425
3543 7060419
3544 10574367
3545 2110749
3546 7949403
3547 5425035
3548 4554465
3549 1049835
3550 4167927
3551 36159
3552 5602833
3553 4845
3554 1116633
3555 2448141
3556 3248883
3557 9527571
3558 13819515
3559 5143929
3560 821355
3561 4781319
3562 7074795
3563 3244389
3564 4943883
3565 3059691
3566 1447125
3567 9316485
3568 3355737
3569 1028079
3570 9272205
3571 1195545
3572 3210267
3573 2469555
3574 3513405
3575 3213129
3576 943653
3577 8409975
3578 8154345
3579 4391349
3580 5231913
3581 4037565
3582 632973
3583 6762285
3584 1909995
3585 757221
3586 1052547
3587 51591
3588 1436745
3589 1394499
3590 1838493
3591 1446441
3592 7545525
3593 4959795
3594 358197
3595 3686529
3596 2835105
3597 3291675
3598 2741643
3599 3672369
3600 11381697
3601 88311
3602 5226843
3603 13421469
3604 763383
3605 20265291
3606 866043
3607 2063979
3608 14246805
3609 551451
3610 3024513
3611 6735105
3612 2109657
3613 8030661
3614 15164145
3615 1871769
3616 101793
3617 3834831
3618 867813
3619 4734219
3620 7564407
3621 7426851
3622 1832397
3623 4553451
3624 3902925
3625 7138629
3626 183207
3627 1829571
3628 1279137
3629 2972571
3630 3578055
3631 695505
3632 1570197
3633 4747521
3634 218217
3635 7624971
3636 4811265
3637 10434111
3638 10060095
3639 6018639
3640 1685697
3641 69069
3642 3377103
3643 722799
3644 4764225
3645 17551545
3646 40713
3647 871161
3648 3743103
3649 3035499
3650 9300423
3651 13100145
3652 5785683
3653 1117161
3654 3012093
3655 5727045
3656 8689317
3657 4655859
3658 5240325
3659 2613771
3660 2691477
3661 1396761
3662 1336947
3663 7134459
3664 2071407
3665 1586931
3666 1117755
3667 3701949
3668 6270057
3669 5194479
3670 470445
3671 879915
3672 3355863
3673 3868779
3674 5384637
3675 2319609
3676 995223
3677 1140441
3678 2556123
3679 3380589
3680 2764605
3681 1761519
3682 467817
3683 3504579
3684 3103173
3685 1513065
3686 654837
3687 5218449
3688 1863423
3689 22770201
3690 3466515
3691 1159935
3692 23318625
3693 865035
3694 3506907
3695 2542575
3696 149307
3697 1861239
3698 581703
3699 251949
3700 3348087
3701 7300875
3702 6583287
3703 11884431
3704 864753
3705 11780661
3706 1586163
3707 799701
3708 1634535
3709 3200829
3710 5050125
3711 1274625
3712 14894643
3713 4712235
3714 1193253
3715 1290339
3716 4448613
3717 1342059
3718 6272373
3719 1553145
3720 11276415
3721 24377115
3722 5373
3723 2303775
3724 256983
3725 9673581
3726 731085
3727 10665585
3728 1627305
3729 5389029
3730 1094247
3731 2147445
3732 5120325
3733 11700555
3734 3075747
3735 16801449
3736 10925907
3737 758229
3738 582225
3739 226821
3740 6842415
3741 4527345
3742 12438273
3743 11021475
3744 5235087
3745 567699
3746 6729237
3747 6554559
3748 2907567
3749 1642299
3750 2696313
3751 1345359
3752 11093967
3753 11828379
3754 5246373
3755 310281
3756 6747213
3757 1090341
3758 5244135
3759 1357419
3760 647493
3761 10306425
3762 7019337
3763 4186665
3764 1101783
3765 8613621
3766 13109175
3767 4098219
3768 7917255
3769 1413375
3770 3654585
3771 766965
3772 311205
3773 3171081
3774 3713133
3775 4844259
3776 5110785
3777 5264931
3778 15195945
3779 6132525
3780 884655
3781 630279
3782 6374487
3783 12981315
3784 337287
3785 7909695
3786 7116945
3787 4048815
3788 2898183
3789 12112959
3790 1394595
3791 1356429
3792 4871577
3793 602649
3794 1688715
3795 6195945
3796 1468707
3797 6810159
3798 7056423
3799 1500339
3800 10236867
3801 14672469
3802 7185183
3803 6276081
3804 5248563
3805 3696951
3806 541485
3807 16553439
3808 323955
3809 9581631
3810 3270423
3811 3471609
3812 3319245
3813 178245
3814 16093533
3815 12826059
3816 1638747
3817 2902641
3818 2791167
3819 356421
3820 2576775
3821 1790649
3822 5221407
3823 583305
3824 3079317
3825 860391
3826 4935
3827 6557859
3828 8774805
3829 2560185
3830 21417
3831 2191599
3832 7320285
3833 26671995
3834 1924713
3835 8765391
3836 14845167
3837 4664331
3838 515157
3839 7250265
3840 1840935
3841 17154411
3842 10969077
3843 4657389
3844 3903135
3845 433125
3846 24015
3847 3122355
3848 3970305
3849 614241
3850 1114503
3851 5460651
3852 8561115
3853 1405425
3854 16622085
3855 345975
3856 12845043
3857 313425
3858 6067215
3859 10665879
3860 3436173
3861 15938241
3862 4307835
3863 11008731
3864 3198135
3865 11608029
3866 6879243
3867 31539
3868 2401203
3869 727485
3870 4268667
3871 6845475
3872 3763395
3873 88071
3874 3109155
3875 6900405
3876 3830265
3877 4271889
3878 804993
3879 851319
3880 2025897
3881 6122841
3882 7790097
3883 3274959
3884 2825067
3885 583215
3886 1371495
3887 704739
3888 1150803
3889 4750881
3890 163713
3891 80661
3892 4168257
3893 13037079
3894 7722837
3895 2644749
3896 6221445
3897 1991259
3898 2168025
3899 2822931
3900 2592915
3901 956271
3902 10436037
3903 16066479
3904 868533
3905 10067649
3906 19038357
3907 5179959
3908 6706725
3909 558999
3910 5138097
3911 5984979
3912 183447
3913 2684409
3914 2158167
3915 458631
3916 387603
3917 168675
3918 897867
3919 3219945
3920 1848927
3921 668061
3922 21628257
3923 653559
3924 5505147
3925 5991099
3926 6394893
3927 488721
3928 695703
3929 1724961
3930 3839253
3931 10069089
3932 1756443
3933 1135071
3934 1346967
3935 7439481
3936 884775
3937 4559961
3938 986205
3939 833271
3940 437487
3941 760449
3942 34407
3943 4179405
3944 778305
3945 1185681
3946 4312245
3947 2862591
3948 2280063
3949 3054765
3950 1696317
3951 2821191
3952 7339773
3953 3097815
3954 7194483
3955 6812415
3956 6337785
3957 3683241
3958 3434685
3959 4097649
3960 1203207
3961 10633029
3962 1316613
3963 1068609
3964 1243293
3965 1080099
3966 653685
3967 4908591
3968 6922125
3969 13950291
3970 4853193
3971 5027079
3972 13371057
3973 1099329
3974 10041783
3975 11829141
3976 7373997
3977 1169811
3978 6481113
3979 2615559
3980 3727485
3981 2637075
3982 7703085
3983 20695455
3984 24731145
3985 11197851
3986 13448553
3987 1152459
3988 541437
3989 49455
3990 2894133
3991 8764455
3992 1254585
3993 1886619
3994 6410487
3995 1657929
3996 2346255
3997 8545521
3998 2564187
3999 9635589
4000 2515263

[/CODE]

robert44444uk 2008-03-24 12:14

[QUOTE=robert44444uk;128009]Gary/ Karsten

Results of first instance primes to 1400 show a rather nice curve when plotting ln(k/n) against n. Best fit looks to be logarithmic as well. Would be interested to know if this might be a good way to target large twins. For example, [U]if[/U] the extrapolation of the best fit to n=333333, gave A= ln(k/n)= 9, then the first twin would be, on average, at k=2.70103*10^9 then the test might look at n from 333333 to n 333433, say at A=8.999 to 9.001 or k=2.69833*10^9 to 2.70373*10^9. A 50 million k range, sieved to 1T would provide about 4,000 candidates for prime checking or 400,000 overall for a 100 k range.


[/QUOTE]

Values within x% either side of the of the forecasted first value for each of the first 4000n:

1% 20
2% 56
3% 84
4% 109
5% 145
6% 168
7% 192
8% 215
9% 238
10% 261

No apparent abnormal density factors at play here

roger 2008-03-24 21:40

Where can I get this automated code Karsten did?
Unfortunately, my range is going slowly, as I have only found 55 (5%), and sieved for 390 (33%). It should improve as my search continues, when it is more organized :redface:

roger

kar_bon 2008-03-25 00:19

data for n upto 4000 are online!

to roger: to get the scripts look some posts above!


All times are UTC. The time now is 13:38.

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.