mersenneforum.org

mersenneforum.org (https://www.mersenneforum.org/index.php)
-   Twin Prime Search (https://www.mersenneforum.org/forumdisplay.php?f=65)
-   -   List of most small twins of form k*2^n+/-1 (https://www.mersenneforum.org/showthread.php?t=8479)

sghodeif 2007-10-22 02:08

[QUOTE=gd_barnes;116368]Excellent! My goal with all of this is to have the most complete and accurate list of Riesel-Proth twin primes anywhere on the web. The more information, the merrier! :grin:


Gary[/QUOTE]


Did u think to find twin primes as big as we want by finding a general formula ????

I wish all the best for u and all mathematicians .

Sghodeif ,
:question:

gd_barnes 2007-11-05 21:20

No general formula that I am aware of for primes of any kind. That's what prime-searchers everywhere are hoping to find! :smile:


G

gd_barnes 2007-11-05 21:35

My Riesel/Proth twin search for k<1M is now up to n=23.5K. See the aforemention web pages for all of the twins found. I'll most likely put a 2nd core on this in the near future. It's getting quite a bit slower past n=20K.


Gary

robert44444uk 2007-11-17 13:59

Gosh this is a major piece of work. GL in your search!!!!

gd_barnes 2007-11-19 05:38

Tks & another side effort
 
[quote=robert44444uk;118692]Gosh this is a major piece of work. GL in your search!!!![/quote]

Thanks, Robert. I'll be hitting n=25K here on core 1 in the next couple of days. Sieving is now up to n=35K and LLRing is speeding up with the addition of a 2nd core to the effort. (Core 2 has tested n=25K-25.6K so far.) We're only averaging about 3 twins for each n=1K range now for k < 1M and the last twin for k < 100K was at n=22312. I expect plenty more but they're thinning out rapidly.

I now update the web page about twice for every n=1K range that I test.

You might be interested in another 'side effort' that I have going on. I have a web page now for all known primes of the form k*10^n-1 where k < 10M at [URL="http://gbarnes017.googlepages.com/primes-kx10n-1.htm"]gbarnes017.googlepages.com/primes-kx10n-1.htm[/URL].

The page is intended for k's of all sizes and I do have several extremely high-weight k's > 10M listed but there are still many primes > 10M from the top-5000 site that aren't on there yet.

I thought you might be interested in the page because Jens Andersen and Axn1 have been battling it out for the k with the most primes and we've got some very large highly prolific k's now! I know how you like super-large super-high-weight k's. The testing is being coordinated in the Riesel Prime Search project here at this thread: [URL="http://mersenneforum.org/showthread.php?t=9578"]mersenneforum.org/showthread.php?t=9578[/URL]. Come over and try to beat our top record of 56 primes on a 20-digit k! :smile:


Gary

gd_barnes 2007-11-22 06:02

The "all-twin" search for k < 1M is now up to n=25.6K. See the web pages in this thread.


Gary

gd_barnes 2007-12-27 04:34

The "all-twin" search for k < 1M is now complete to n=30K. They are all shown at:
[URL]http://gbarnes017.googlepages.com/twins100K.htm[/URL]
[URL]http://gbarnes017.googlepages.com/twins1M.htm[/URL]

Here are some statistics for n=20K-30K:

1 twin for k < 10K:
7485*2^20023+/-1

2 twins for 10K < k < 100K:
70497*2^27652+/-1
31257*2^22312+/-1

39 twins for 100K < k < 1M:
(highest 10 listed; see 'twins1M' web page for rest)
815751*2^29705+/-1
953337*2^28520+/-1
771843*2^28494+/-1
445569*2^28353+/-1
198417*2^27858+/-1
293445*2^27643+/-1
939015*2^27542+/-1
228015*2^27509+/-1
294723*2^27504+/-1
766293*2^27110+/-1
(etc.)

All checked for triplets...no luck.

Testing is currently at n=30.4K and sieving at n=40K. The search on 2 cores continues to n=100K. A 3rd core will be added at n=40K.


Gary

gd_barnes 2008-02-09 04:29

The "all-twin" search for k < 1M is now up to n=36.1K. See the web pages in this thread.

There were 11 twins from n=30K-36.1K. Also found was the [B]largest known Riesel/Proth twin for k<100K[/B]. Here is the complete list for the range:

k<100K:
51315*2^32430+/-1

100K<k<1M:
892881*2^36075+/-1
338205*2^35351+/-1
959715*2^34895+/-1
143835*2^33826+/-1
649545*2^33398+/-1
440685*2^31989+/-1
249435*2^30977+/-1
282891*2^30309+/-1
383775*2^30279+/-1
523851*2^30197+/-1


Current known Riesel/Proth twin prime records:
k<1M 134583*2^80828+/-1 (from top-5K site)
k<100K 51315*2^32430+/-1 (from this effort)
k<10K 7485*2^20023+/-1 (from top-5K site)
k<1K 915*2^11455+/-1 (from top-5K site)


Gary

gd_barnes 2008-02-11 20:45

I posted 2 days too early. In just another 100n up to n=36.2K, I found 2 more twins, one for k<100K!:

47553*2^36172+/-1
296139*2^36125+/-1


The first one is the new standard to beat for k<100K.


Gary

robert44444uk 2008-02-21 06:32

[QUOTE=gd_barnes;115888]
If you know someone in the forum there, perhaps you could ask them to expand the list to include the first prime odd-k for each n up to n=10K. That would be interesting to see.

Gary[/QUOTE]

[QUOTE=jasong;116365][very masculine voice]
THIS SOUNDS LIKE A JOB FOR...PFGW!!!
[/very masculine voice]

Now, if I could just find my PFGW suit. It's got 'PFGW Man' written on the front, and it shows off my anatomy so well that I've been banned from wearing it in a few places.[/QUOTE]

It appears that Jasong couldn't find his PFGW suit, perhaps it was in a closet marked "unwanted Xmas gifts"

Anyway, analysing Gary's <100K site produces the following table:

I will try to fill up to n=500

Regards

Robert

[code]
n 1st k
1 3
2 1
3 9
4 15
5 81
6 3
7 9
8 57
9 45
10 15
11 99
12 165
13 369
14 45
15 345
16 117
17 381
18 3
19 69
20 447
21 81
22 33
23 1179
24 243
25 765
26 375
27 81
28 387
29 45
30 345
31 681
32 585
33 375
34 267
35 741
36 213
37 429
38 3093
39 165
40 267
41 255
42 1095
43 9
44 147
45 849
46 405
47 1491
48 177
49 1941
50 927
51 1125
52 1197
53 2001
54 333
55 519
56 1065
57 585
58 657
59 129
60 147
61 141
62 417
63 9
64 1623
65 99
66 2985
67 2469
68 4497
69 5259
70 597
71 7029
72 315
73 3081
74 2457
75 4161
76 603
77 3591
78 2697
79 3681
80 213
81 2079
82 1545
83 4089
84 165
85 1455
86 10287
87 1629
88 387
89 3321
90 14487
91 849
92 1467
93 3339
94 3747
95 6639
96 7737
97 8265
98 15735
99 5589
100 4107
101 9225
102 537
103 2079
104 1203
105 1515
106 1323
107 7245
108 6897
109 20631
110 2205
111 2175
112 3087
113 11145
114 7887
115 14841
116 2673
117 5961
118 3303
119 5565
120 3957
121 9849
122 1497
123 1125
124 1983
125 699
126 2565
127 8721
128 4467
129 5835
130 6063
131 1089
132 3117
133 1455
134 3105
135 6129
136 22365
137 3555
138 24453
139 8121
140 4143
141 1179
142 6903
143 309
144 11505
145 14121
146 17037
147 1419
148 17157
149 5715
150 345
151 13179
152 4497
153 3741
154 10803
155 105
156 30657
157 14439
158 14445
159 7569
160 17295
161 25425
162 6555
163 2121
164 3717
165 13731
166 7737
167 18711
168 765
169 1881
170 19335
171 32361
172 2847
173 2115
174 4155
175 1941
176 1383
177 24771
178 2277
179 10479
180 4287
181 441
182 19617
183 27261
184 2493
185 5481
186 28227
187 20175
188 1935
189 45
190 525
191 13719
192 8337
193 12495
194 18087
195 27099
196 9753
197 56745
198 4245
199 8265
200 63855
201 27261
202 69855
203 14199
204 1755
205 5529
206 1197
207 54639
208 69753
209 10461
210 10575
211 9
212 3615
213 26145
214 9225
215 5859
216 12255
217 6615
218 16653
219 18531
220 24087
221 6555
222 7947
223 12909
224 49203
225 49341
226 10857
227 3405
228 25665
229 19041
230 21255
231 2571
232 30015
233 47079
234 24915
235 77751
236 33333
237 16641
238 135
239 17289
240 10197
241 4059
242 1023
243 50319
244 22113
245 9915
246 17535
247 19041
248 15795

250 23007
251 5139
252 17787
253 15519
254 12957
255 1215
256 64647
257 9951
258 74253
259 2805
260 2475
261 15711
262 25767
263 9789
264 165
265 13209
266 19593
267 33105

269 969
270 98907
271 19335
272 22317
273 10635
274 13713
275 34245
276 41085
277 24129
278 26025
279 24579

281 3381
282 165
283 20175
284 23853
285 25881
286 61647
287 39315
288 2667
289 67695
290 34647
291 1899
292 33735
293 48861
294 2373
295 58179
296 66507
297 9609
298 20085
299 6405

301 44529
302 16575
303 22815
304 99297
305 21015
306 21075
307 91455
308 9993
309 15069
310 9543
311 79719
312 36195
313 14649
314 7605
315 67461
316 16035
317 12951
318 20295
319 41349
320 82473
321 20781
322 19293
323 88791
324 55605
325 23295
326 25473
327 10071
328 28653
329 48489
330 12477
331 7791

333 669
334 16437
335 42699
336 93765
337 12909
338 5253
339 23415

341 21585
342 76995

344 573
345 31719
346 15717
347 43011
348 33765
349 28149
350 71253

352 14727
353 85431
354 10545
355 7785
356 38853
357 70851
358 65385
359 9129

361 5049
362 49815
363 26871

365 9369
366 74763
367 18669
368 16905
369 49299
370 12543
371 3321


374 40257
375 26679
376 14223
377 23709
378 22713
379 66039
380 1023
381 67749
382 34683


385 72609

387 1701
388 56817
389 10791
390 39345
391 615

393 95151
394 67023
395 21315
396 28065
397 24039
398 19065

400 48207
401 28941
402 83337

404 22887
405 74085
406 35253
407 79215
408 31635
409 36825
410 50835

412 58065
413 86061
414 39513
415 17061
416 32025
417 30705
418 1743
419 71919

421 66075
422 84057
423 81651
424 65337


427 83139
428 36903
429 39039

431 66219
432 69477
433 50181
434 54033
435 5415
436 30987

438 24693
439 56259
440 25077
441 15255
442 18795
443 3921
444 35793
445 9345
446 18663
447 30849
448 57717
449 69285

451 26355

453 17631
454 65193
455 2085
456 9063
457 15561
458 4323

460 34725
461 92235

463 53991
464 63903
465 24351
466 12147
467 33351
468 2565

470 5547

472 8787

474 49053
475 13935
476 33375
477 33315

479 53019




484 50295
485 27975


488 7503
489 73671
490 37095
491 37719
492 1995
493 97449
494 39207
495 27261

497 99015
498 37755

500 52305

502 35397
503 66735
504 35877
505 74985

507 5565



511 43485
512 51765

514 53355
515 87951
516 12045
517 66375

519 83211
520 4257
521 17709
522 80175
523 76089
524 47403
525 5775
526 62337
527 43371
528 43137
529 10365
530 74367



534 84627

536 49893
537 23541
538 2007
539 12711

541 8031

543 40119

545 18801
546 297
547 5979
548 97293

550 26853
551 4035
552 29187

554 70923
555 67329


558 80385

560 39243





566 75225
567 28131

569 60411
570 25485
571 27909
572 20037
573 14259
574 70107
575 38835




580 88257
581 76569
582 22587
583 28005
584 15177

586 83175

588 50235

590 42777

592 86385
593 45315


596 41625


599 74229
600 82023
603 33885
610 86973
611 8781
612 47313
613 94005
615 34059
616 79353
617 29919
618 54015
619 18429
620 55203
621 46035
622 87795
623 12285
626 16323
635 52419
636 78033
643 91629
644 84045
647 24249
648 78453
650 3723
654 61353
655 38835
657 21999
658 75447
660 50943
661 77505
662 32067
669 58725
672 15993
677 3405
680 7605
684 24537
689 13689
690 46545
691 38229
692 47937
694 13197
695 2985
696 96813
703 5355
707 37149
710 60693
711 25029
713 92529
714 35817
717 78561
718 86193
720 89577
725 20115
726 213
727 35589
728 30933
734 50025
736 5013
737 11175
738 95937
740 51975
742 58683
743 48075
744 9753
745 9165
748 42777
750 22407
758 84057
762 48615
765 73059
767 315
768 65475
771 56199
773 62391
776 26775
780 51777
781 88299
786 58257
787 17481
788 20997
789 19485
793 98649
794 18495
799 95565
805 72861
809 47055
811 70539
813 10125
817 64401
821 49041
824 66975
827 12285
828 78375
829 1365
831 24609
833 49539
837 62361
841 86679
844 87303
846 61785
847 5265
852 53763
853 18885
856 87495
857 88095
858 63135
861 37359
863 93765
865 31575
867 60681
873 55209
874 75783
875 50565
877 31005
880 4107
882 17145
884 25833
886 87465
888 45675
889 59421
896 11925
898 59925
899 68901
903 23901
906 24747
908 88407
914 5673
921 94629
922 10533
925 50595
927 80139
928 79623
929 83271
933 94335
934 41727
936 52953
940 5955
945 60729
947 27825
948 61425
949 23805
950 13503
953 21741
954 45243
957 77805
958 66417
961 98061
965 7995
966 82995
969 77565
973 16011
976 68313
983 10485
988 97323
992 56685
994 24963
1007 37275
1008 48225
1013 74091
1014 35523
1018 19887
1028 98493
1032 177
1034 16233
1037 71421
1045 94065
1048 3885
1052 85845
1055 91755
1056 88515
1057 33405
1059 60099
1066 90165
1067 85911
1070 70623
1075 13131
1076 50025
1084 15315
1084 16665
1086 69417
1098 58287
1102 27435
1104 4275
1107 48681
1110 11007
1122 60513
1134 83205
1142 11007
1156 1035
1167 54339
1168 62823
1173 52461
1175 46791
1188 65613
1193 84435
1197 45201
1217 14199
1221 88329
1228 79203
1229 42399
1237 74109
1241 13629
1244 64233
1245 88575
1251 75705
1256 53865
1261 32265
1267 95229
1270 71805
1272 50655
1274 95847
1282 99105
1286 9183
1295 49119
1299 3339
1312 15657
1314 46965
1321 1065
1325 62265
1327 2625
1338 92115
1354 38565
1355 62289
1367 7755
1383 67821
1389 97899
1390 14877
1391 76479
1394 88155
1402 80103
1406 18003
1408 98475
1425 86205
1431 75519
1440 10083
1441 74031
1446 93837
1447 51651
1462 15927
1466 74505
1468 85077
1471 81489
1475 66381
1483 57891
1500 32547
1509 86361
1532 83973
1533 36045
1553 291
1556 81255
1566 42507
1599 15375
1603 89895
1616 78327
1623 33549
1625 65835
1640 34215
1652 33957
1660 20733
1672 56685
1676 96897
1677 24969
1678 34725
1689 27765
1718 51747
1721 45951
1757 41229
1763 29481
1767 84159
1786 42825
1793 95151
1794 98583
1820 79335
1823 57495
1849 87585
1858 29835
1860 13317
1869 82275
1880 22035
1900 4425
1933 39171
1954 8007
1966 63237
1971 3885
1985 31545
2024 10095
2083 84609
2112 59553
2129 11655
2138 40215
2162 33117
2182 53955
2185 66729
2191 4359
2196 24405
2213 6201
2253 75219
2255 7419
2278 43947
2280 25293
2333 43089
2470 60957
2473 52935
2498 56727
2501 86085
2518 94815
2529 33939
2569 79029
2637 89115
2679 61269
2685 93429
2695 59415
2707 32811
2743 52011
2748 84255
2821 6075
2827 20805
2834 61947
2844 58053
2846 10725
2867 36159
2887 88629
2899 69735
2945 12195
3004 57267
3017 5559
3074 90705
3104 58143
3179 41205
3215 43095
3229 49449
3283 1149
3426 34365
3460 2403
3503 83331
3551 36159
3553 4845
3587 51591
3601 88311
3641 69069
3646 40713
3722 5373
3826 4935
3830 21417
3846 24015
3867 31539
3873 88071
3891 80661
3942 34407
3989 49455
4335 32721
4619 66969
4787 74565
4884 22767
4901 2565
4997 31569
5147 58311
5154 88335
5316 43923
5396 85107
5459 82005
5738 58983
5907 5775
6177 79515
6593 45639
6634 4737
6885 33801
7170 77367
7618 74313
7631 54729
7727 74229
7768 33957
8060 69927
8160 31335
8335 3975
8529 459
8825 53985
9154 61593
9869 33891
10601 10941
10929 34911
11455 915
11493 57201
11710 78045
12178 73005
13153 3981
13466 44943
15263 88665
15770 74193
17372 77517
17527 14439
17705 96321
17987 88269
18989 56361
19742 98067
19817 53889
20023 7485
22312 31257
27652 70497
32430 51315
36172 47553

[/code]

robert44444uk 2008-02-21 09:14

low k for each n to 1000
 
Here is a table of lowest k for each twin to n=1000

Does anyone want to take further?

* denotes jumping champion

[code]

1 3*
2 1
3 9*
4 15*
5 81*
6 3
7 9
8 57
9 45
10 15
11 99*
12 165*
13 369*
14 45
15 345
16 117
17 381*
18 3
19 69
20 447*
21 81
22 33
23 1179*
24 243
25 765
26 375
27 81
28 387
29 45
30 345
31 681
32 585
33 375
34 267
35 741
36 213
37 429
38 3093*
39 165
40 267
41 255
42 1095
43 9
44 147
45 849
46 405
47 1491
48 177
49 1941
50 927
51 1125
52 1197
53 2001
54 333
55 519
56 1065
57 585
58 657
59 129
60 147
61 141
62 417
63 9
64 1623
65 99
66 2985
67 2469
68 4497*
69 5259*
70 597
71 7029*
72 315
73 3081
74 2457
75 4161
76 603
77 3591
78 2697
79 3681
80 213
81 2079
82 1545
83 4089
84 165
85 1455
86 10287*
87 1629
88 387
89 3321
90 14487*
91 849
92 1467
93 3339
94 3747
95 6639
96 7737
97 8265
98 15735*
99 5589
100 4107
101 9225
102 537
103 2079
104 1203
105 1515
106 1323
107 7245
108 6897
109 20631*
110 2205
111 2175
112 3087
113 11145
114 7887
115 14841
116 2673
117 5961
118 3303
119 5565
120 3957
121 9849
122 1497
123 1125
124 1983
125 699
126 2565
127 8721
128 4467
129 5835
130 6063
131 1089
132 3117
133 1455
134 3105
135 6129
136 22365*
137 3555
138 24453*
139 8121
140 4143
141 1179
142 6903
143 309
144 11505
145 14121
146 17037
147 1419
148 17157
149 5715
150 345
151 13179
152 4497
153 3741
154 10803
155 105
156 30657*
157 14439
158 14445
159 7569
160 17295
161 25425
162 6555
163 2121
164 3717
165 13731
166 7737
167 18711
168 765
169 1881
170 19335
171 32361*
172 2847
173 2115
174 4155
175 1941
176 1383
177 24771
178 2277
179 10479
180 4287
181 441
182 19617
183 27261
184 2493
185 5481
186 28227
187 20175
188 1935
189 45
190 525
191 13719
192 8337
193 12495
194 18087
195 27099
196 9753
197 56745*
198 4245
199 8265
200 63855*
201 27261
202 69855*
203 14199
204 1755
205 5529
206 1197
207 54639
208 69753
209 10461
210 10575
211 9
212 3615
213 26145
214 9225
215 5859
216 12255
217 6615
218 16653
219 18531
220 24087
221 6555
222 7947
223 12909
224 49203
225 49341
226 10857
227 3405
228 25665
229 19041
230 21255
231 2571
232 30015
233 47079
234 24915
235 77751*
236 33333
237 16641
238 135
239 17289
240 10197
241 4059
242 1023
243 50319
244 22113
245 9915
246 17535
247 19041
248 15795
249 168831*
250 23007
251 5139
252 17787
253 15519
254 12957
255 1215
256 64647
257 9951
258 74253
259 2805
260 2475
261 15711
262 25767
263 9789
264 165
265 13209
266 19593
267 33105
268 45213
269 969
270 98907
271 19335
272 22317
273 10635
274 13713
275 34245
276 41085
277 24129
278 26025
279 24579
280 128505
281 3381
282 165
283 20175
284 23853
285 25881
286 61647
287 39315
288 2667
289 67695
290 34647
291 1899
292 33735
293 48861
294 2373
295 58179
296 66507
297 9609
298 20085
299 6405
300 230085*
301 44529
302 16575
303 22815
304 99297
305 21015
306 21075
307 91455
308 9993
309 15069
310 9543
311 79719
312 36195
313 14649
314 7605
315 67461
316 16035
317 12951
318 20295
319 41349
320 82473
321 20781
322 19293
323 88791
324 55605
325 23295
326 25473
327 10071
328 28653
329 48489
330 12477
331 7791
332 345675*
333 669
334 16437
335 42699
336 93765
337 12909
338 5253
339 23415
340 128625
341 21585
342 76995
343 153645
344 573
345 31719
346 15717
347 43011
348 33765
349 28149
350 71253
351 127305
352 14727
353 85431
354 10545
355 7785
356 38853
357 70851
358 65385
359 9129
360 162243
361 5049
362 49815
363 26871
364 210447
365 9369
366 74763
367 18669
368 16905
369 49299
370 12543
371 3321
372 138765
373 151839
374 40257
375 26679
376 14223
377 23709
378 22713
379 66039
380 1023
381 67749
382 34683
383 114951
384 126747
385 72609
386 114687
387 1701
388 56817
389 10791
390 39345
391 615
392 108195
393 95151
394 67023
395 21315
396 28065
397 24039
398 19065
399 102795
400 48207
401 28941
402 83337
403 101535
404 22887
405 74085
406 35253
407 79215
408 31635
409 36825
410 50835
411 273429
412 58065
413 86061
414 39513
415 17061
416 32025
417 30705
418 1743
419 71919
420 224415
421 66075
422 84057
423 81651
424 65337
425 237765
426 251475
427 83139
428 36903
429 39039
430 110157
431 66219
432 69477
433 50181
434 54033
435 5415
436 30987
437 102309
438 24693
439 56259
440 25077
441 15255
442 18795
443 3921
444 35793
445 9345
446 18663
447 30849
448 57717
449 69285
450 155463
451 26355
452 258345
453 17631
454 65193
455 2085
456 9063
457 15561
458 4323
459 104661
460 34725
461 92235
462 229227
463 53991
464 63903
465 24351
466 12147
467 33351
468 2565
469 108795
470 5547
471 139935
472 8787
473 184281
474 49053
475 13935
476 33375
477 33315
478 141315
479 53019
480 162897
481 233115
482 143163
483 150939
484 50295
485 27975
486 101055
487 156051
488 7503
489 73671
490 37095
491 37719
492 1995
493 97449
494 39207
495 27261
496 208845
497 99015
498 37755
499 131439
500 52305
501 207945
502 35397
503 66735
504 35877
505 74985
506 103107
507 5565
508 216243
509 107631
510 262035
511 43485
512 51765
513 134115
514 53355
515 87951
516 12045
517 66375
518 366555*
519 83211
520 4257
521 17709
522 80175
523 76089
524 47403
525 5775
526 62337
527 43371
528 43137
529 10365
530 74367
531 104409
532 347457
533 396441*
534 84627
535 278535
536 49893
537 23541
538 2007
539 12711
540 174297
541 8031
542 121065
543 40119
544 330015
545 18801
546 297
547 5979
548 97293
549 157209
550 26853
551 4035
552 29187
553 190485
554 70923
555 67329
556 130227
557 105381
558 80385
559 300561
560 39243
561 112581
562 176205
563 199989
564 117243
565 120069
566 75225
567 28131
568 239247
569 60411
570 25485
571 27909
572 20037
573 14259
574 70107
575 38835
576 247035
577 126615
578 136413
579 404871*
580 88257
581 76569
582 22587
583 28005
584 15177
585 210051
586 83175
587 173355
588 50235
589 133911
590 42777
591 389799
592 86385
593 45315
594 179163
595 257529
596 41625
597 268461
598 147135
599 74229
600 82023
601 135585
602 190695
603 33885
604 113475
605 264849
606 129705
607 368775
608 217143
609 228651
610 86973
611 8781
612 47313
613 94005
614 261075
615 34059
616 79353
617 29919
618 54015
619 18429
620 55203
621 46035
622 87795
623 12285
624 143265
625 104091
626 16323
627 140739
628 137907
629 223569
630 643737*
631 229749
632 506475
633 123891
634 242523
635 52419
636 78033
637 137835
638 227283
639 198459
640 558087
641 664941*
642 394203
643 91629
644 84045
645 274395
646 250923
647 24249
648 78453
649 109809
650 3723
651 205251
652 375843
653 624165
654 61353
655 38835
656 256605
657 21999
658 75447
659 101661
660 50943
661 77505
662 32067
663 374901
664 567573
665 258651
666 249345
667 127041
668 144717
669 58725
670 392013
671 130689
672 15993
673 178689
674 252693
675 376929
676 257613
677 3405
678 169893
679 469755
680 7605
681 217221
682 386127
683 151845
684 24537
685 243879
686 141705
687 246405
688 224625
689 13689
690 46545
691 38229
692 47937
693 152421
694 13197
695 2985
696 96813
697 102789
698 157587
699 436095
700 179865
701 317481
702 169827
703 5355
704 253995
705 330171
706 312387
707 37149
708 270177
709 158115
710 60693
711 25029
712 700005*
713 92529
714 35817
715 629211
716 118413
717 78561
718 86193
719 101361
720 89577
721 119721
722 150567
723 715449*
724 102213
725 20115
726 213
727 35589
728 30933
729 343359
730 308853
731 111285
732 142047
733 597339
734 50025
735 123585
736 5013
737 11175
738 95937
739 140481
740 51975
741 170625
742 58683
743 48075
744 9753
745 9165
746 131937
747 113271
748 42777
749 227871
750 22407
751 1025925
752 140967
753 110775
754 797433*
755 490281
756 490107
757 125169
758 84057
759 133521
760 404775
761 913671*
762 48615
763 242445
764 141243
765 73059
766 988437*
767 315
768 65475
769 484455
770 354417
771 56199
772 743433
773 62391
774 173667
775 125385
776 26775
777 188979
778 410187
779 239271
780 51777
781 88299
782 406707
783 108351
784 364203
785 193515
786 58257
787 17481
788 20997
789 19485
790 116103
791 217809
792 488805
793 98649
794 18495
795 119259
796 212157
797 526701
798 679623
799 95565
800 207663
801 291951
802 353127
803 267795
804 442227
805 72861
806 613383
807 136119
808 142785
809 47055
810 539157
811 70539
812 191085
813 10125
814 105537
815 234315
816 385887
817 64401
818 789453
819 377451
820 125385
821 49041
822 640677
823 268101
824 66975
825 134481
826 515955
827 12285
828 78375
829 1365
830 554925
831 24609
832 524217
833 49539
834 130323
835 155085
836 1175493*
837 62361
838 127905
839 238395
840 916815
841 86679
842 129237
843 122685
844 87303
845 451209
846 61785
847 5265
848 255693
849 163965
850 278427
851 382875
852 53763
853 18885
854 169407
855 157251
856 87495
857 88095
858 63135
859 555039
860 629997
861 37359
862 798315
863 93765
864 722967
865 31575
866 1744257*
867 60681
868 483735
869 399591
870 167967
871 1767711*
872 111027
873 55209
874 75783
875 50565
876 272085
877 31005
878 296043
879 622671
880 4107
881 134511
882 17145
883 430389
884 25833
885 1097925
886 87465
887 895101
888 45675
889 59421
890 910923
891 149091
892 115845
893 248349
894 173283
895 133875
896 11925
897 498981
898 59925
899 68901
900 105177
901 109305
902 1039227
903 23901
904 141615
905 344949
906 24747
907 248781
908 88407
909 179091
910 107457
911 551979
912 313485
913 127689
914 5673
915 136881
916 106413
917 233349
918 163377
919 280929
920 367023
921 94629
922 10533
923 382035
924 773367
925 50595
926 143403
927 80139
928 79623
929 83271
930 424167
931 2035431*
932 116385
933 94335
934 41727
935 390099
936 52953
937 164829
938 165537
939 369381
940 5955
941 202335
942 112053
943 317955
944 164787
945 60729
946 170085
947 27825
948 61425
949 23805
950 13503
951 385695
952 178173
953 21741
954 45243
955 351765
956 232947
957 77805
958 66417
959 399105
960 770193
961 98061
962 312297
963 1170699
964 177255
965 7995
966 82995
967 703701
968 514437
969 77565
970 113745
971 1390269
972 493173
973 16011
974 192255
975 947859
976 68313
977 230439
978 582717
979 262575
980 441357
981 402141
982 626943
983 10485
984 163497
985 411081
986 706773
987 1305255
988 97323
989 349521
990 417375
991 234291
992 56685
993 179445
994 24963
995 219069
996 237675
997 400941
998 330075
999 586899
1000 467343

[/code]


All times are UTC. The time now is 13:38.

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.