![]() |
There is one more example of a 15-bit largest common subsequence:
Mersenne exponent #47 = 43112609 = 1010010001[B][COLOR=red]110110001010000[/COLOR][/B]1[SUB]2[/SUB], and Mersenne exponent #49 = 74207281 = 1000[COLOR=Red][B]110110001010000[/B][/COLOR]00110001[SUB]2[/SUB]. |
There are 5 examples of 13-bit largest common subsequences:
Mersenne exponent #28 = 86243 = 1010[COLOR=Red][B]1000011100011[/B][/COLOR][SUB]2[/SUB], and Mersenne exponent #51 = 82589933 = 10011101[COLOR=red][B]1000011100011[/B][/COLOR]101101[SUB]2[/SUB]; Mersenne exponent #30 = 132049 = 100[B][COLOR=red]0000011110100[/COLOR][/B]01[SUB]2[/SUB], and Mersenne exponent #48 = 57885161 = 110111001101[B][COLOR=red]0000011110100[/COLOR][/B]1[SUB]2[/SUB]; Mersenne exponent #32 = 756839 = 10111[COLOR=Red][B]0001100011001[/B][/COLOR]11[SUB]2[/SUB], and Mersenne exponent #42 = 25964951 = 11000110[B][COLOR=red]0001100011001[/COLOR][/B]0111[SUB]2[/SUB]; Mersenne exponent #34 = 1257787 = 100110[B][COLOR=red]0110001001110[/COLOR][/B]11[SUB]2[/SUB], and Mersenne exponent #41 = 24036583 = 10110111[B][COLOR=red]0110001001110[/COLOR][/B]0111[SUB]2[/SUB]; and Mersenne exponent #47 = 43112609 = 101001000[B][COLOR=red]1110110001010[/COLOR][/B]0001[SUB]2[/SUB], and Mersenne exponent #50 = 77232917 = 1001001101001[B][COLOR=red]1110110001010[/COLOR][/B]1[SUB]2[/SUB]. |
There are 5 examples of 12-bit largest common subsequences:
Mersenne exponent #17 = 2281 = [B][COLOR=red]100011101001[/COLOR][/B][SUB]2[/SUB], and Mersenne exponent #33 = 859433 = 110[B][COLOR=red]100011101001[/COLOR][/B]01001[SUB]2[/SUB]; Mersenne exponent #38 = 6972593 = 1101010011[B][COLOR=red]001001011000[/COLOR][/B]1[SUB]2[/SUB], and Mersenne exponent #44 = 32582657 = 111110[B][COLOR=red]001001011000[/COLOR][/B]0000001[SUB]2[/SUB]; Mersenne exponent #41 = 24036583 = 1011[B][COLOR=red]011101100010[/COLOR][/B]011100111[SUB]2[/SUB], and Mersenne exponent #47 = 43112609 = 10100100[B][COLOR=red]011101100010[/COLOR][/B]100001[SUB]2[/SUB]; Mersenne exponent #46 = 42643801 = 1010001010[B][COLOR=red]101100010101[/COLOR][/B]1001[SUB]2[/SUB], and Mersenne exponent #50 = 77232917 = 100100110100111[B][COLOR=red]101100010101[/COLOR][/B][SUB]2[/SUB]; and Mersenne exponent #49 = 74207281 = 1000[B][COLOR=red]110110001010[/COLOR][/B]00000110001[SUB]2[/SUB], and [FONT="]Mersenne exponent #50 = 77232917 = 10010011010011[B][COLOR=red]110110001010[/COLOR][/B]1[SUB]2[/SUB].[/FONT] |
There are 6 examples of 11-bit largest common subsequences:
Mersenne exponent #19 = 4253 = 10[B][COLOR=red]00010011101[/COLOR][/B][SUB]2[/SUB], and Mersenne exponent #34 = 1257787 = 100110011[B][COLOR=red]00010011101[/COLOR][/B]1[SUB]2[/SUB]; Mersenne exponent #25 = 21701 =[B][COLOR=red] 10101001100[/COLOR][/B]0101[SUB]2[/SUB], and Mersenne exponent #38 = 6972593 = 1[B][COLOR=red]10101001100[/COLOR][/B]10010110001[SUB]2[/SUB]; Mersenne exponent #41 = 24036583 = 10110[B][COLOR=red]11101100010[/COLOR][/B]011100111[SUB]2[/SUB], and Mersenne exponent #50 = 77232917 = 1001001101001[B][COLOR=red]11101100010[/COLOR][/B]101[SUB]2[/SUB]; Mersenne exponent #46 = 42643801 = 1010001010[B][COLOR=red]10110001010[/COLOR][/B]11001[SUB]2[/SUB], and Mersenne exponent #47 = 43112609 = 10100100011[B][COLOR=red]10110001010[/COLOR][/B]0001[SUB]2[/SUB]; Mersenne exponent #46 = 42643801 = 1010001010[B][COLOR=red]10110001010[/COLOR][/B]11001[SUB]2[/SUB], and Mersenne exponent #49 = 74207281 = 10001[B][COLOR=red]10110001010[/COLOR][/B]00000110001[SUB]2[/SUB]; and Mersenne exponent #47 = 43112609 = 1010010[B][COLOR=red]00111011000[/COLOR][/B]10100001[SUB]2[/SUB], and [FONT="]Mersenne exponent #51 = 82589933 = 1[B][COLOR=red]00111011000[/COLOR][/B]011100011101101[SUB]2[/SUB].[/FONT] |
Also, there are:
- 19 examples of 10-bit LCSs; - 56 examples of 9-bit LCSs; - 103 examples of 8-bit LCSs; - 166 examples of 7-bit LCSs; - 229 examples of 6-bit LCSs; - 235 examples of 5-bit LCSs; - 145 examples of 4-bit LCSs; - 142 examples of 3-bit LCSs; - 146 examples of 2-bit LCSs; and - 16 examples of 1-bit LCSs. This is for the total of 1275 = (51×51-51)/2 = 2+5+5+6+19+56+103+166+229+235+145+142+146+16 ([I]i[/I], [I]j[/I]) pairs. |
1 Attachment(s)
Let's investigate the largest common subsequences when the bits of one of the exponents are [COLOR=Red][B]reversed[/B][/COLOR] (using the Wolfram function [COLOR=Blue]IntegerReverse[/COLOR] for [I]base[/I] = 2 ) so that the bit sequence is presented in reversed order and the least significant bit (LSB) becomes the most significant bit (MSB).
The result is shown in the attached 3D image. The largest common subsequence contains 14 bits: Mersenne exponent #37 = 3021377 = 1011100001101001000001[SUB]2[/SUB], with [COLOR=Red][B]reversed[/B][/COLOR] bits 100[COLOR=Red][B]00010010110000[/B][/COLOR]11101[SUB]2[/SUB], and Mersenne exponent #44 = 32582657 = 11111[COLOR=red][B]00010010110000[/B][/COLOR]000001[SUB]2[/SUB]. There are: - 1 example of 14-bit LCSs; - 4 examples of 12-bit LCSs; - 9 examples of 11-bit LCSs; - 14 examples of 10-bit LCSs; - 59 examples of 9-bit LCSs; - 102 examples of 8-bit LCSs; - 173 examples of 7-bit LCSs; - 229 examples of 6-bit LCSs; - 230 examples of 5-bit LCSs; - 154 examples of 4-bit LCSs; - 139 examples of 3-bit LCSs; - 145 examples of 2-bit LCSs; and - 16 examples of 1-bit LCSs. This is for the total of 1275 = (51×51-51)/2 = 1+4+9+14+59+102+173+229+230+154+139+145+16 ([I]i[/I], [I]j[/I]) pairs. |
For completeness, let’s count the [B][COLOR=red]cyclic[/COLOR][/B] largest common subsequences for pairs of exponents of Mersenne primes for which the binary sequences of the exponents are folded in a closed loop.
There are 3 cyclic largest common subsequences of bit length = 16 bits: Mersenne exponent #28 = 86243 = [B][COLOR=red]101[/COLOR][/B]0[B][COLOR=red]1000011100011[/COLOR][/B][SUB]2[/SUB], and Mersenne exponent #51 = 82589933 = 10011101[B][COLOR=red]1000011100011101[/COLOR][/B]101[SUB]2[/SUB]; Mersenne exponent #34 = 1257787 = [B][COLOR=red]100110[/COLOR][/B]01100[B][COLOR=red]0100111011[/COLOR][/B][SUB]2[/SUB], and Mersenne exponent #48 = 57885161 = [B][COLOR=red]11011100110[/COLOR][/B]1000001111[B][COLOR=red]01001[/COLOR][/B][SUB]2[/SUB]; and Mersenne exponent #46 = 42643801 = 1010001010[B][COLOR=red]1011000101011001[/COLOR][/B][SUB]2[/SUB], and Mersenne exponent #50 = 77232917 = [B][COLOR=red]1001[/COLOR][/B]00110100111[B][COLOR=red]101100010101[/COLOR][/B][SUB]2[/SUB]. [code] Bit length, Cyclic LCS count 1, 4 2, 40 3, 92 4, 131 5, 136 6, 212 7, 237 8, 177 9, 126 10, 55 11, 27 12, 17 13, 10 14, 5 15, 3 16, 3[/code]Let’s also count the [B][COLOR=red]cyclic[/COLOR][/B] largest common subsequences for pairs of exponents of Mersenne primes when the bits of one of the exponents are [B][COLOR=red]reversed[/COLOR][/B][COLOR=black].[/COLOR] There is one cyclic largest common subsequence of bit length = 17 bits: Mersenne exponent #44 = 32582657 = 1111100010010110000000001[SUB]2[/SUB], with [B][COLOR=red]reversed[/COLOR][/B] bits 100000[B][COLOR=red]00001101001000111[/COLOR][/B]11[SUB]2[/SUB], and Mersenne exponent #47 = 43112609 = [B][COLOR=red]101001000111[/COLOR][/B]011000101[B][COLOR=red]00001[/COLOR][/B][SUB]2[/SUB]. [code] Bit length, Cyclic LCS count when the bits of one of the exponents are reversed 1, 4 2, 40 3, 93 4, 128 5, 142 6, 217 7, 225 8, 177 9, 131 10, 56 11, 33 12, 18 13, 5 14, 4 15, 1 16, 0 [FONT="]17, 1[/FONT][/code][FONT="] [/FONT] |
Let's consider the LCS set of all base-2 largest common subsequences between the exponents of the first [I]n[/I] known Mersenne primes.
A concatenation between LCSs can be attempted to construct the exponent of the next known Mersenne prime #([I]n[/I]+1). [U]Bit reversal and cyclic operations are allowed.[/U] The exhaustive computations show that no such concatenation of up to 3 (or even 4) LCSs can be performed for all odd exponents of known Meresenne primes, 1 < [I]n[/I] ≤ 51. Such concatenations do exist for many exponents but not for all of them. Therefore, a new LCS between the next exponent #([I]n[/I]+1) and one of the [I]n[/I] preceding exponents has to be selected. Then all odd exponents #([I]n[/I]+1) of known Mersenne primes can be represented as [B]a concatenation of a new LCS and [COLOR="Red"]no more than two[/COLOR] other LCSs[/B] from the LCS set of the preceding exponents of the first [I]n[/I] known Mersenne primes. |
Here is an illustration concerned with the previous post #19 at [URL]https://www.mersenneforum.org/showpost.php?p=615770&postcount=19[/URL].
The exponent 521 = 1000001001[SUB]2[/SUB] of M13 is used as an example. The LCS set of the preceding 12 exponents is: {1, 10, 11, 011, 100, 101, 111, 1001, 1011, 1101, 1111, 11111}[SUB]2[/SUB]. No LCS concatenation can construct the exponent of M13 because of 5 consecutive 0s. One has to select a suitable new LCS from the LCSs between the exponent of M13 and the preceding 12 exponents: (1, 10, 010, 1000, 1001}[SUB]2[/SUB]. Selecting the new LCS 1000[SUB]2[/SUB] and using bit reversal for 100[SUB]2[/SUB] gives the following LCS construct: {1000, 001, 001}[SUB]2[/SUB]. |
Below is the [COLOR=Red][B]LCS set[/B][/COLOR] related to post #16 at [URL]https://www.mersenneforum.org/showpost.php?p=615384&postcount=16[/URL].
It contains [COLOR=Red][B]311[/B][/COLOR] distinct LCSs for all 51 exponents of known Mersenne primes. Some LCSs occur more than one time for the total of [B][COLOR=Blue]1275[/COLOR][/B] ([I]i[/I], [I]j[/I]) pairs in post #16. [code] 1 10 11 010 011 100 101 110 111 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 00010 00011 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111 000010 000011 000101 001001 001100 001101 001110 001111 010001 010011 010100 010110 010111 011000 011001 011010 011011 011101 011110 011111 100000 100001 100010 100011 100101 100110 100111 101000 101001 101010 101011 101100 101101 101110 101111 110001 110010 110011 110100 110101 110110 110111 111000 111010 111100 111101 111110 111111 0000010 0000011 0000111 0001001 0001101 0001110 0010010 0010011 0010100 0010111 0011000 0011001 0011011 0011100 0011101 0011110 0100000 0100101 0100110 0100111 0101000 0101001 0101111 0110000 0110001 0110101 0110111 0111000 0111011 0111100 0111101 0111111 1000001 1000101 1000110 1000111 1001001 1001011 1001100 1001101 1001111 1010000 1010001 1010011 1010100 1010101 1010110 1011000 1011001 1011100 1011101 1011110 1100001 1100010 1100011 1100110 1100111 1101001 1101010 1101011 1101100 1101101 1101110 1110001 1110011 1110100 1111000 1111100 1111111 00000011 00001001 00001101 00010011 00011011 00100101 00110000 00110001 00110010 00110011 00110100 00110110 00111011 00111101 01001000 01010000 01010101 01011000 01011111 01100000 01100010 01101001 01101011 01110011 01110100 01111011 01111111 10000000 10000011 10001001 10001010 10010010 10010111 10011000 10011001 10011010 10011011 10011101 10011110 10100000 10100100 10101001 10101011 10101101 10101111 10110000 10110001 10110101 10110111 10111000 10111100 11000011 11001100 11001101 11010001 11010010 11010011 11010101 11011000 11011101 11100001 11100110 11100111 11101001 11101100 11110100 000110001 001001101 001011111 001101001 001101101 010010001 010011101 010100001 010101011 010110001 010111111 011000011 011000101 011011110 011100011 011100111 011101100 011111110 100000001 100010011 100011101 100100101 100110100 100111011 101000000 101000111 101001000 101001100 101011111 101100010 110000110 110001001 110010010 110011010 110100100 110100111 111001101 111010001 111010010 111011000 111101001 0000110001 0001001110 0100011101 0100111011 0110100111 0111011000 0111100110 1000101000 1000110110 1001100010 1001111111 1010011000 1010101010 1011010101 1011011101 1011101100 1101100010 1101110011 00010011101 00111011000 10101001100 10110001010 11101100010 001001011000 011101100010 100011101001 101100010101 110110001010 0000011110100 0001100011001 0110001001110 1000011100011 1110110001010 110101111101001 110110001010000 [/code] |
Below is the [B][COLOR="Red"]LCS set[/COLOR][/B] related to post #17 at [url]https://mersenneforum.org/showpost.php?p=615423&postcount=17[/url] when the bits of one of the exponents in each pair ([I]i[/I], [I]j[/I]) are [B][COLOR="Red"]reversed[/COLOR][/B] so that its bit sequence is presented in a reversed order and the least significant bit (LSB) becomes the most significant bit (MSB).
It contains [B][COLOR="red"]311[/COLOR][/B] distinct LCSs for all 51 exponents of known Mersenne primes. Some LCSs occur more than once for the total of [B][COLOR="Blue"]1275[/COLOR][/B] ([I]i[/I], [I]j[/I]) pairs in post #17. [code] 1 10 11 010 011 100 101 110 111 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111 10000 10001 10010 10011 10100 10101 10110 10111 11001 11010 11011 11100 11101 11110 11111 000010 000011 000101 000110 000111 001001 001010 001100 001101 001110 001111 010001 010010 010011 010100 010101 010110 010111 011000 011001 011010 011011 011100 011101 011110 011111 100000 100001 100010 100011 100101 100110 100111 101000 101001 101010 101011 101100 101101 101110 101111 110000 110001 110010 110011 110100 110101 110110 110111 111000 111001 111010 111101 111111 0000010 0000011 0000101 0000110 0000111 0001001 0001101 0010010 0010011 0010100 0010111 0011000 0011001 0011011 0011100 0011101 0011110 0011111 0100000 0100011 0100100 0100110 0101000 0101001 0101011 0101111 0110001 0110011 0110101 0110111 0111011 0111100 0111101 0111111 1000000 1000001 1000010 1000101 1000110 1000111 1001000 1001001 1001011 1001100 1001101 1001110 1001111 1010000 1010001 1010010 1010100 1010101 1010110 1011000 1011001 1011100 1011111 1100001 1100010 1100011 1100100 1100110 1100111 1101001 1101010 1101011 1101100 1101101 1101110 1110000 1110001 1110011 1110100 1111010 1111111 00001001 00011010 00011011 00011101 00100101 00100110 00101100 00101111 00110110 00110111 00111011 01000111 01001100 01011001 01011111 01100111 01101001 01101110 01110001 01111001 01111111 10000000 10000010 10001001 10001101 10001110 10010001 10010010 10010111 10011000 10011001 10011011 10011101 10100011 10100100 10101000 10101010 10101101 10101111 10110001 10110101 10111000 10111011 11000001 11000101 11001001 11001011 11010010 11010011 11010100 11010101 11010110 11011001 11011101 11011110 11100001 11100110 11100111 11101000 11101001 11111010 000000011 000000101 000001011 000001101 000011011 000101000 001100000 001100111 010010001 010100011 010111100 011000000 011010101 011011101 011100011 011100111 011101001 011110011 011111110 100001110 100011000 100011011 100011101 100101100 100101110 100101111 100110001 100110011 100110101 100111011 101001100 101011111 101101110 101110001 101110110 101111001 110000110 110001001 110100100 110110001 110110101 110111001 111010011 111011001 111101000 0110101010 1000001001 1000110000 1000110011 1000110110 1001001011 1001011111 1001110111 1001111111 1011100011 1011110000 1100111011 00010100011 00101110110 00110001100 00110111100 01011111010 10100110001 11010011000 11010101010 000110100100 011100001101 101010111111 111000100101 00001101001000[/code] [code] (* Wolfram code *) MpData = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933}; nMp = Length[MpData]; LCSa = ConstantArray[0, nMp*(nMp - 1)/2]; base = 2; count = 0; ic = 0; While[ic < nMp, ic++; intlen1 = Length[IntegerDigits[MpData[[ic]], base]]; s1 = IntegerDigits[MpData[[ic]], base, intlen1]; jc = 0; While[jc < nMp, jc++; If[ic < jc, intlen2 = Length[IntegerDigits[MpData[[jc]], base]]; s2 = IntegerDigits[IntegerReverse[MpData[[jc]],base], base, intlen2]; cs = LongestCommonSubsequence[s1, s2]; If[cs != {}, fd = cs; mc = 1; kc = 0; While[kc < count, kc++; If[LCSa[[kc]] == fd, mc = 0;];]; If[mc == 1, count++; LCSa[[count]] = fd;];]; ];];]; lcs = ConstantArray[0, count]; kc = 0; While[kc < count, kc++; lcs[[kc]] = LCSa[[kc]];]; lcs = Sort[lcs]; kc = 0; While[kc < count, kc++; Print[IntegerString[lcs[[kc]], base]];]; Print[count]; [/code] |
| All times are UTC. The time now is 04:19. |
Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.