![]() |
Note that Every Even perfect numbers (except 6 ) are
[LEFT][/LEFT]Note that Every Even perfect numbers (except 6 ) are :
2pā1(2p ā 1) = 1 Mod (9*p) but not necessarily alternately. p ======== perfect NUMBRE 3 ======== 28 =1 mod (27) 5 ======== 496 =1 mod (45) 7 ======== 8128 =1 mod (63) 13 ======== 33550336 =1 mod (117) 17 ======== 8589869056 =1 mod (153) 19 ======== 137438691328 =1 mod (171) 31 ======== 2305843008139952128 =1 mod (279) is also work as primlity test : p ======== 2pā1(2p ā 1) 15 ======== 536854528 = 28 mod (135) 21 ======== 2199022206976 = 28 mod (189) 35 ======== 590295810341525782528 = 118 mod (315) |
If p is prime, then 2[sup]p-1[/sup] == 1 (mod p) and 2[sup]p[/sup] == 2 (mod p) so 2[sup]p-1[/sup](2[sup]p[/sup] - 1) == 1*1 == 1 (mod p).
If p > 3, then p == 1 or 5 (mod 6). If p == 1 (mod 6) then 2[sup]p-1[/sup] == 1 (mod 9) and 2[sup]p[/sup] - 1 == 1 (mod 9), so 2[sup]p-1[/sup](2[sup]p[/sup] - 1) == 1*1 == 1 (mod 9). If p == 5 (mod 6) then 2[sup]p-1[/sup] == 7 (mod 9) and 2[sup]p[/sup] - 1 == 4 (mod 9), so 2[sup]p-1[/sup](2[sup]p[/sup] - 1) == 7*4 == 1 (mod 9). Another triumph for elementary number theory! |
lol
|
| All times are UTC. The time now is 13:21. |
Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.