mersenneforum.org

mersenneforum.org (https://www.mersenneforum.org/index.php)
-   Miscellaneous Math (https://www.mersenneforum.org/forumdisplay.php?f=56)
-   -   Note that Every Even perfect numbers (except 6 ) are (https://www.mersenneforum.org/showthread.php?t=24689)

baih 2019-08-14 13:24

Note that Every Even perfect numbers (except 6 ) are
 
[LEFT][/LEFT]Note that Every Even perfect numbers (except 6 ) are :


2pāˆ’1(2p āˆ’ 1) = 1 Mod (9*p) but not necessarily alternately.

p ======== perfect NUMBRE

3 ======== 28 =1 mod (27)
5 ======== 496 =1 mod (45)
7 ======== 8128 =1 mod (63)
13 ======== 33550336 =1 mod (117)
17 ======== 8589869056 =1 mod (153)
19 ======== 137438691328 =1 mod (171)
31 ======== 2305843008139952128 =1 mod (279)

is also work as primlity test :



p ======== 2pāˆ’1(2p āˆ’ 1)

15 ======== 536854528 = 28 mod (135)
21 ======== 2199022206976 = 28 mod (189)
35 ======== 590295810341525782528 = 118 mod (315)

Dr Sardonicus 2019-08-14 13:46

If p is prime, then 2[sup]p-1[/sup] == 1 (mod p) and 2[sup]p[/sup] == 2 (mod p) so 2[sup]p-1[/sup](2[sup]p[/sup] - 1) == 1*1 == 1 (mod p).

If p > 3, then p == 1 or 5 (mod 6).

If p == 1 (mod 6) then 2[sup]p-1[/sup] == 1 (mod 9) and 2[sup]p[/sup] - 1 == 1 (mod 9), so 2[sup]p-1[/sup](2[sup]p[/sup] - 1) == 1*1 == 1 (mod 9).

If p == 5 (mod 6) then 2[sup]p-1[/sup] == 7 (mod 9) and 2[sup]p[/sup] - 1 == 4 (mod 9), so 2[sup]p-1[/sup](2[sup]p[/sup] - 1) == 7*4 == 1 (mod 9).

Another triumph for elementary number theory!

baih 2019-08-14 13:54

lol


All times are UTC. The time now is 13:21.

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.