mersenneforum.org

mersenneforum.org (https://www.mersenneforum.org/index.php)
-   sweety439 (https://www.mersenneforum.org/forumdisplay.php?f=137)
-   -   generalized minimal (probable) primes (https://www.mersenneforum.org/showthread.php?t=21819)

sweety439 2016-12-08 19:35

generalized minimal (probable) primes
 
1 Attachment(s)
There are researches for minimal primes in base b: [URL]https://cs.uwaterloo.ca/~cbright/reports/mepn.pdf[/URL], and data for minimal primes and remaining families in bases 2 to 30: [URL]https://github.com/curtisbright/mepn-data/tree/master/data[/URL], data for minimal primes and remaining families in bases 28 to 50: [URL]https://github.com/RaymondDevillers/primes[/URL].

This is a text file for minimal primes in bases 2 to 16.

sweety439 2016-12-16 18:15

1 Attachment(s)
These are unsolved families in base 2 to base 36, given by the links. (see the links for the top (probable) primes)

sweety439 2016-12-21 19:59

Is anyone reserving these families?

Bases <= 36 with only few families remaining:

Base 17:

F1{9}: (4105*17^n-9)/16

Base 19:

EE1{6}: (15964*19^n-1)/3

Base 21:

G{0}FK: 7056*21^n+335

Base 26:

{A}6F: (1352*26^n-497)/5
{I}GL: (12168*26^n-1243)/25

Base 28:

O{A}F: (18424*28^n+125)/27

Base 36:

O{L}Z: (4428*36^n+67)/5
{P}SZ: (6480*36^n+821)/7

sweety439 2016-12-21 20:00

The letters A, B, C, D, ... are the digits: A=10, B=11, C=12, D=13, ...

sweety439 2017-01-16 18:24

The status:

Base 17:

F1{9}: (4105*17^n-9)/16: at n=1M, no (probable) prime found.

Base 19:

EE1{6}: (15964*19^n-1)/3: at n=707K, no (probable) prime found.

Base 21:

G{0}FK: 7056*21^n+335: at n=506K, no (probable) prime found.

Base 25:

EF{O}: 366*25^n-1: at n=660K, no (probable) prime found.
OL{8}: (4975*25^n-111)/8: at n=303K, no (probable) prime found.
CM{1}: (7729*25^n-1)/24: at n=303K, no (probable) prime found.
E{1}E: (8425*25^n+311)/24: at n=303K, no (probable) prime found.
...
(all other unsolved families in base 25 may be tested to n=303K)

Base 26:

{A}6F: (1352*26^n-497)/5: at n=486K, no (probable) prime found.
{I}GL: (12168*26^n-1243)/25: at n=497K, no (probable) prime found.

Base 27:

8{0}9A: 5832*27^n+253: at n=368K, no (probable) prime found.
C{L}E: (8991*27^n-203)/26: at n=368K, no (probable) prime found.
999{G}: (88577*27^n-8)/13: at n=368K, no (probable) prime found.
E{I}F8: (139239*27^n-1192)/13: at n=368K, no (probable) prime found.
{F}9FM: (295245*27^n-113557)/26: at n=368K, no (probable) prime found.

Base 28:

O{A}F: (18424*28^n+125)/27: at n=543K, no (probable) prime found.

Base 29:

All the unsolved families may be tested to n=242K.

Since the page [URL]https://github.com/curtisbright/mepn-data/tree/master/data[/URL] only solve the minimal prime problem to bases b<=30, for 31<=b<=36, these bases are reserved by me (these bases have already reserve to n=10K). Now, I am reserving bases 31, 35 and 36, use factordb.

In fact, I decide to solve the minimal prime problem to all bases b<=64 in the future. However, at present, I only solve this problem to all bases b<=36. I will reserve bases 37<=b<=64 if all the bases b<=36 have been tested to at least n=1M.

sweety439 2017-03-06 12:10

For the two unsolved families in base 36:

O{L}Z: (30996*36^n+469)/35: tested up to n=15815, no (probable) prime found.
{P}SZ: (6480*36^n+821)/7: tested up to n=15815, no (probable) prime found.

sweety439 2017-04-13 18:41

Base 31:

E8{U}P: 13733*31^n-6: at n=15K, no (probable) prime found.
{P}I: (155*31^n-47)/6: at n=15K, no (probable) prime found.
{R}1: (279*31^n-269)/10: at n=15K, no (probable) prime found.
{U}P8K: 29791*31^n-5498: at n=15K, no (probable) prime found.

sweety439 2017-05-02 11:14

These problems are to find a prime of the form (k*b^n+c)/gcd(k+c,b-1) with integer n>=1 for fixed integers k, b and c, k>=1, b>=2, gcd(k,c)=1 and gcd(b,c)=1.

For some (k,b,c), there cannot be any prime because of covering set (e.g. (k,b,c) = (78557,2,1), (334,10,-1) or (84687,6,-1)) or full algebra factors (e.g. (k,b,c) = (9,4,-1), (2500,16,1) or (9,4,-25) (the case (9,4,-25) can produce prime [I]only[/I] for n=1)) or partial algebra factors (e.g. (k,b,c) = (144,28,-1), (25,17,-9) or (1369,30,-1)). It is conjectured that for every (k,b,c) which cannot be proven that they do not have any prime, there are infinitely primes of the form (k*b^n+c)/gcd(k+c,b-1). (Notice the special case: (k,b,c) = (8,128,1), it cannot have any prime but have neither covering set nor algebra factors)

However, there are many such cases even not have a single known prime, like (21181,2,1), (2293,2,-1), (4,53,1), (1,185,-1), (1,38,1), (269,10,1), (197,7,-1), (4105,17,-9), (16,21,335), (5,36,821), but not all case will produce a minimal prime to base b, e.g. the form (197*7^n-1)/2 is the form 200{3} in base 7, but since 2 is already prime, the smallest prime of this form (if exists) will not be a minimal prime in base 7.

The c=1 and gcd(k+c,b-1)=1 case is the Sierpinski problem base b, and the c=-1 and gcd(k+c,b-1)=1 case is the Riesel problem base b.

sweety439 2017-05-02 12:18

Other special cases:

k=1, c=1, b is even: the generalized Fermat primes in base b.
k=1, c=1, b is odd: the generalized half Fermat primes in base b.
k=1, c=-1: the repunit primes in base b.

sweety439 2017-05-02 12:24

Also,

k=1, c>0: the dual Sierpinski problem base b.
k=1, c<0: the dual Riesel problem base b.

sweety439 2017-05-02 12:25

(k*b^n+c)/gcd(k+c,b-1) has full algebra factors if and only if at least one of the following conditions holds:

* There is an integer r>1 such that k, b and -c are all perfect r-th powers.

or

* b and 4kc are both perfect 4th powers.

sweety439 2017-05-20 15:46

[QUOTE=sweety439;458107]These problems are to find a prime of the form (k*b^n+c)/gcd(k+c,b-1) with integer n>=1 for fixed integers k, b and c, k>=1, b>=2, gcd(k,c)=1 and gcd(b,c)=1.

For some (k,b,c), there cannot be any prime because of covering set (e.g. (k,b,c) = (78557,2,1), (334,10,-1) or (84687,6,-1)) or full algebra factors (e.g. (k,b,c) = (9,4,-1), (2500,16,1) or (9,4,-25) (the case (9,4,-25) can produce prime [I]only[/I] for n=1)) or partial algebra factors (e.g. (k,b,c) = (144,28,-1), (25,17,-9) or (1369,30,-1)). It is conjectured that for every (k,b,c) which cannot be proven that they do not have any prime, there are infinitely primes of the form (k*b^n+c)/gcd(k+c,b-1). (Notice the special case: (k,b,c) = (8,128,1), it cannot have any prime but have neither covering set nor algebra factors)

However, there are many such cases even not have a single known prime, like (21181,2,1), (2293,2,-1), (4,53,1), (1,185,-1), (1,38,1), (269,10,1), (197,7,-1), (4105,17,-9), (16,21,335), (5,36,821), but not all case will produce a minimal prime to base b, e.g. the form (197*7^n-1)/2 is the form 200{3} in base 7, but since 2 is already prime, the smallest prime of this form (if exists) will not be a minimal prime in base 7.

The c=1 and gcd(k+c,b-1)=1 case is the Sierpinski problem base b, and the c=-1 and gcd(k+c,b-1)=1 case is the Riesel problem base b.[/QUOTE]

gcd(k+c,b-1) is the largest number that divides k*b^n+c for all n.

Note: gcd(0, m) = m for all integer m, and gcd(1, m) = 1 for all integer m.

Batalov 2017-05-20 17:11

[QUOTE=sweety439;459400]Note: gcd(0, m) = m for all integer m, and gcd(1, m) = 1 for all integer m.[/QUOTE]
Thank you, Captain Obvious!
In other news today, [SPOILER]light travels faster than sound, and a minute contains 60 seconds.[/SPOILER]

Xyzzy 2017-05-21 03:45

[QUOTE=Batalov;459411][SPOILER]…and a minute contains 60 seconds.[/SPOILER][/QUOTE]Is that always true?

[SPOILER]https://en.wikipedia.org/wiki/Leap_second[/SPOILER]

:mike:

Batalov 2017-05-21 05:15

[QUOTE=Xyzzy;459441]Is that always true?
[/QUOTE]
It is just as true as "[I]gcd(0, m) = m for all integer m[/I]".
[SPOILER]For m=0, gcd(0, 0) = 24. 24 is a greatest common divisor of 0 and 0, because it divides both 0 and 0, and there is no higher number: see goo.gl/ASN4Ov ... and 24 ≠ 0[/SPOILER]

sweety439 2017-05-21 17:43

[QUOTE=Batalov;459443]It is just as true as "[I]gcd(0, m) = m for all integer m[/I]".
[SPOILER]For m=0, gcd(0, 0) = 24. 24 is a greatest common divisor of 0 and 0, because it divides both 0 and 0, and there is no higher number: see goo.gl/ASN4Ov ... and 24 ≠ 0[/SPOILER][/QUOTE]

No, gcd(0, m) = m is true only for [I][B]positive[/B][/I] integer m. :smile:

CRGreathouse 2017-05-21 22:03

[QUOTE=sweety439;459463]No, gcd(0, m) = m is true only for [I][B]positive[/B][/I] integer m. :smile:[/QUOTE]

gcd(0, 0) = 0 so the rule holds in all cases [SPOILER]except when you want to take 24 as maximal instead of 0 for humor[/SPOILER].

Dr Sardonicus 2017-05-22 14:29

[QUOTE=Batalov;459411][spoiler]light travels faster than sound[/spoiler][/QUOTE]
Depends on the medium. Through a vacuum, it certainly does. Also through the air we breathe. But it takes a long, long time for the EM energy produced in the solar core to make its way through the interior of the sun, and out as sunshine. Sound waves travel through the interior of the sun much more quickly.

sweety439 2017-05-22 18:00

[QUOTE=Dr Sardonicus;459519]Depends on the medium. Through a vacuum, it certainly does. Also through the air we breathe. But it takes a long, long time for the EM energy produced in the solar core to make its way through the interior of the sun, and out as sunshine. Sound waves travel through the interior of the sun much more quickly.[/QUOTE]

If the medium is not transparent, the the speed of (visible light) is zero, thus it is lower then that of sound. Besides, if the medium is vacuum, then the speed of sound is zero, since sound needs medium to spread.

sweety439 2017-05-22 18:05

[QUOTE=Batalov;459411]Thank you, Captain Obvious!
In other news today, [SPOILER]light travels faster than sound, and a minute contains 60 seconds.[/SPOILER][/QUOTE]

A minute does not always contain 60 seconds, since the definition of second is from the cesium atomic, it is not always 1/60 minute = 1/86400 day, since the definition of day is form earth. Besides, [SPOILER]in Alaska and in Amazon forest, the length of "second" is not the same, since the distance of them to geocentric is different XDDD...[/SPOILER]

sweety439 2019-11-27 09:36

Base 36 has only two unsolved family:

(4428*36^n+67)/5
(6480*36^n+821)/7

Base 40 has only two unsolved family:

(13998*40^n+29)/13
(86*40^n+37)/3

sweety439 2019-11-27 09:39

[QUOTE=sweety439;531551]Base 36 has only two unsolved family:

(4428*36^n+67)/5
(6480*36^n+821)/7

Base 40 has only two unsolved family:

(13998*40^n+29)/13
(86*40^n+37)/3[/QUOTE]

A (probable) prime was found:

(13998*40^12381+29)/13

Written in base 40, this number is Qa{U[SUB]12380[/SUB]}X

This number is likely the second-largest "base 40 minimal prime"

sweety439 2019-11-27 09:42

[QUOTE=sweety439;531552]A (probable) prime was found:

(13998*40^12381+29)/13

Written in base 40, this number is Qa{U[SUB]12380[/SUB]}X

This number is likely the second-largest "base 40 minimal prime"[/QUOTE]

(86*40^n+37)/3 (S{Q}d in base 40) currently at n=21939, no (probable) prime found.

(4428*36^n+67)/5 (O{L}Z in base 36) currently at n=23729, no (probable) prime found.

(6480*36^n+821)/7 ({P}SZ in base 36) currently at n=20235, no (probable) prime found.

sweety439 2019-11-27 21:37

1 Attachment(s)
[QUOTE=sweety439;531553](86*40^n+37)/3 (S{Q}d in base 40) currently at n=21939, no (probable) prime found.

(4428*36^n+67)/5 (O{L}Z in base 36) currently at n=23729, no (probable) prime found.

(6480*36^n+821)/7 ({P}SZ in base 36) currently at n=20235, no (probable) prime found.[/QUOTE]

(86*40^n+37)/3 (S{Q}d in base 40) tested to n=25K, no (probable) prime found.

Extended to n=50K

sweety439 2019-11-27 21:40

(4428*36^n+67)/5 (O{L}Z in base 36) currently at n=32401, no (probable) prime found.

(6480*36^n+821)/7 ({P}SZ in base 36) currently at n=26743, no (probable) prime found.

sweety439 2019-11-27 21:46

[QUOTE=sweety439;531552]A (probable) prime was found:

(13998*40^12381+29)/13

Written in base 40, this number is Qa{U[SUB]12380[/SUB]}X

This number is likely the second-largest "base 40 minimal prime"[/QUOTE]

See the page [URL="https://github.com/RaymondDevillers/primes"]https://github.com/RaymondDevillers/primes[/URL]

sweety439 2019-11-27 21:51

1 Attachment(s)
[QUOTE=sweety439;531599](86*40^n+37)/3 (S{Q}d in base 40) tested to n=25K, no (probable) prime found.

Extended to n=50K[/QUOTE]

(86*40^n+37)/3 (S{Q}d in base 40) seems to have a low weight, for 25K<=n<=50K, sieve to p=10^9, only 481 n remain.

sweety439 2019-11-27 22:41

[QUOTE=sweety439;531600](4428*36^n+67)/5 (O{L}Z in base 36) currently at n=32401, no (probable) prime found.

(6480*36^n+821)/7 ({P}SZ in base 36) currently at n=26743, no (probable) prime found.[/QUOTE]

I know that they can be reduced to (123*36^n+67)/5 and (5*36^n+821)/7, however, we let n be the number of the digits in "{}" (thus, the base 40 unsolved family should be (3440*40^n+37)/3 ....

sweety439 2019-11-28 02:37

We assume the conjecture in post [URL="https://mersenneforum.org/showpost.php?p=529838&postcount=675"]https://mersenneforum.org/showpost.php?p=529838&postcount=675[/URL] is true (thus, all families in the files "unsolved xx" in [URL="https://github.com/curtisbright/mepn-data/tree/master/data"]https://github.com/curtisbright/mepn-data/tree/master/data[/URL] and all families in the files "left xx" in [URL="https://github.com/RaymondDevillers/primes"]https://github.com/RaymondDevillers/primes[/URL] have infinitely many primes)

Then the number of base n digits of the largest base n minimal prime is about 2^eulerphi(n)

[CODE]
n length of the largest minimal prime in base n
2 2
3 3
4 2
5 5
6 5
7 5
8 9
9 4
10 8
11 45
12 8
13 32021 (PRP)
14 86
15 107
16 3545
18 33
20 449
22 764
23 800874 (PRP)
24 100
30 1024
42 487
[/CODE]

[CODE]
n excepted length of the largest minimal prime in base n
2 2
3 4
4 4
5 16
6 4
7 64
8 16
9 64
10 16
11 1024
12 16
13 4096
14 64
15 256
16 256
17 65536
18 64
19 262144
20 256
21 4096
22 1024
23 4194304
24 256
25 1048576
26 4096
27 262144
28 4096
29 268435456
30 256
31 1073741824
32 65536
33 1048576
34 65536
35 16777216
36 4096
37 68719476736
38 262144
39 16777216
40 65536
41 1099511627776
42 4096
43 4398046511104
44 1048576
45 16777216
46 4194304
47 70368744177664
48 65536
49 4398046511104
50 1048576
51 4294967296
52 16777216
53 4503599627370496
54 262144
55 1099511627776
56 16777216
57 68719476736
58 268435456
59 288230376151711744
60 65536
61 1152921504606846976
62 1073741824
63 68719476736
64 4294967296
65 281474976710656
66 1048576
67 73786976294838206464
68 4294967296
69 17592186044416
70 16777216
71 1180591620717411303424
72 16777216
[/CODE]

sweety439 2019-11-28 03:29

Also, assume the conjecture in post [URL="https://mersenneforum.org/showpost.php?p=529838&postcount=675"]https://mersenneforum.org/showpost.php?p=529838&postcount=675[/URL] is true:

[CODE]
n length of largest minimal prime in base n
17 >1000000
19 >707000
21 >506700
25 >660000 (because of the EF{O} family, given by [URL="https://github.com/curtisbright/mepn-data/blob/master/data/sieve.25.txt"]https://github.com/curtisbright/mepn-data/blob/master/data/sieve.25.txt[/URL])
26 >486700
27 >368000
28 >543000
29 >242300
31 >=524288 (because of the {F}G family, given by [URL="https://oeis.org/A275530"]https://oeis.org/A275530[/URL] and [URL="http://www.fermatquotient.com/PrimSerien/GenFermOdd.txt"]http://www.fermatquotient.com/PrimSerien/GenFermOdd.txt[/URL])
32 >=3435973837 (because of the G{0}1 family, given by [URL="http://www.prothsearch.com/fermat.html"]http://www.prothsearch.com/fermat.html[/URL])
33 >10000
34 >10000
35 >10000
36 >32401 (the only two unsolved families are both reserved by me)
37 >=22023 (because of the prime FY{a[SUB]22021[/SUB]}, given by CRUS)
38 >=16777217 (because of the 1{0}1 family, see [URL="http://yves.gallot.pagesperso-orange.fr/primes/results.html"]http://yves.gallot.pagesperso-orange.fr/primes/results.html[/URL] and [URL="http://www.primegrid.com/stats_genefer.php"]http://www.primegrid.com/stats_genefer.php[/URL])
39 >10000
40 >25000 (the only one unsolved family is reserved by me)
41 >10000
43 >10000
44 >10000
45 >=18523 (because of the prime O{0[SUB]18521[/SUB]}1, given by CRUS, note that the prime AO{0[SUB]44790[/SUB]}1 is not a minimal prime in base 45, although AO{0}1 is in [URL="https://github.com/RaymondDevillers/primes/blob/master/left45"]https://github.com/RaymondDevillers/primes/blob/master/left45[/URL])
46 >250000 (because of the d4{0}1 family, given by CRUS)
47 >10000
48 >250000 (because of the a{0}1 family, given by CRUS)
49 >=52700 (because of the prime SL{m[SUB]52698[/SUB]}, given by CRUS)
50 >=16777217 (because of the 1{0}1 family, see [URL="http://yves.gallot.pagesperso-orange.fr/primes/results.html"]http://yves.gallot.pagesperso-orange.fr/primes/results.html[/URL] and [URL="http://www.primegrid.com/stats_genefer.php"]http://www.primegrid.com/stats_genefer.php[/URL])
[/CODE]

sweety439 2019-11-28 03:49

[QUOTE=sweety439;531551]Base 36 has only two unsolved family:

(4428*36^n+67)/5
(6480*36^n+821)/7

Base 40 has only two unsolved family:

(13998*40^n+29)/13
(86*40^n+37)/3[/QUOTE]

The two unsolved family should be:

(559920*40^n+29)/13
(3440*40^n+37)/3

and this (probable) prime should be:

(559920*40^12380+29)/13



(13998*40^12381+29)/13 is the reduced form

sweety439 2019-11-29 06:56

1 Attachment(s)
No (probable) prime found for (86*40^n+37)/3 (S{Q}d in base 40) for n=25K-50K.

Text file attached.

Extended to n=100K.

sweety439 2019-11-30 05:51

1 Attachment(s)
Base 36:

O{L}Z (4428*36^n+67)/5: tested to n=50K, no (probable) prime found
{P}SZ (6480*36^n+821)/7: currently at n=41566, no (probable) prime found

Base 40:

S{Q}d (86*40^n+37)/3: currently at n=59777, no (probable) prime found

sweety439 2019-11-30 06:42

[QUOTE=sweety439;531552]A (probable) prime was found:

(13998*40^12381+29)/13

Written in base 40, this number is Qa{U[SUB]12380[/SUB]}X

This number is likely the second-largest "base 40 minimal prime"[/QUOTE]

Another probable prime is (13998*40^13474+29)/13, but this is not minimal prime in base 40

sweety439 2019-12-07 08:39

1 Attachment(s)
[QUOTE=sweety439;531730]Base 36:

O{L}Z (4428*36^n+67)/5: tested to n=50K, no (probable) prime found
{P}SZ (6480*36^n+821)/7: currently at n=41566, no (probable) prime found

Base 40:

S{Q}d (86*40^n+37)/3: currently at n=59777, no (probable) prime found[/QUOTE]

Base 36 {P}SZ (6480*36^n+821)/7 tested to n=50K, no (probable) prime found.

Result file attached.

sweety439 2019-12-07 08:42

Base 40:

S{Q}d (86*40^n+37)/3: currently at n=87437, no (probable) prime found

sweety439 2020-10-18 13:39

Unsolved families:

Base 17:

F1{9}: (4105*17^n-9)/16

Base 19:

EE1{6}: (15964*19^n-1)/3

Base 21:

G{0}FK: 7056*21^n+335

Base 25:

EF{O}: 366*25^n-1
O{L}8: (4975*25^n-111)/8
CM{1}: (7729*25^n-1)/24
E{1}E: (8425*25^n+311)/24
EE{1}: (8737*25^n-1)/24
6M{F}9: (34525*25^n-53)/8
F{1}F1: (225625*25^n+8399)/24

Base 26:

{A}6F: (1352*26^n-497)/5
{I}GL: (12168*26^n-1243)/25

Base 31:

E8{U}P: 13733*31^n-6
{F}RA: (961*31^n+733)/2
{F}G: (31*31^n+1)/2
{F}KO: (961*31^n+327)/2
IE{L}: (5727*31^n-7)/10
{L}G: (217*31^n-57)/10
{L}CE: (6727*31^n-2867)/10
M{P}: (137*31^n-5)/6
{P}I: (155*31^n-47)/6
{R}1: (279*31^n-269)/10
{R}8: (279*31^n-199)/10
{U}P8K: 29791*31^n-5498

sweety439 2020-10-20 12:35

Base 31:

ILE{L}: (179637*31^n-7)/10 [need not to be searched if a smaller prime for the "IE{L}: (5727*31^n-7)/10" family were found]
L{F}G: (1333*31^n+1)/2 [need not to be searched if a smaller prime for the "{F}G: (31*31^n+1)/2" family were found]
L0{F}G: (40393*31^n+1)/2 [need not to be searched if a smaller prime for either the "{F}G: (31*31^n+1)/2" family or the "L{F}G: (1333*31^n+1)/2" family were found]
{L}9G: (6727*31^n-3777)/10 [need not to be searched if a smaller prime for the "{L}G: (217*31^n-57)/10" family were found]
{L}9IG: (208537*31^n-116307)/10 [need not to be searched if a smaller prime for either the "{L}G: (217*31^n-57)/10" family or the "{L}9G: (6727*31^n-3777)/10" family were found]
{L}SO: (6727*31^n+2193)/10
{L}IS: (6727*31^n-867)/10
MI{O}L: (108624*31^n-19)/5
P{F}G: (1581*31^n+1)/2 [need not to be searched if a smaller prime for the "{F}G: (31*31^n+1)/2" family were found]
PEO{0}Q: 758973*31^n+26
{R}1R: (8649*31^n-8069)/10 [need not to be searched if a smaller prime for the "{R}1: (279*31^n-269)/10" family were found]
SP{0}K: 27683*31^n+20

sweety439 2020-10-20 12:48

Base 35:

6W{P}4: (288855*35^n-739)/34 [need not to be searched if a smaller prime for the "W{P}4: (38955*35^n-739)/34" family were found]
F8{0}F9: 652925*35^n+534
{Y}PO: 1225*35^n-326
FQ{F}I: (656215*35^n+87)/34
PX{0}ER: 1112300*35^n+517
Q{P}4: (31815*35^n-739)/34
RF{0}CPI: 41160000*35^n+15593

Base 36:

O{L}Z: (30996*36^n+469)/35
{P}SZ: (6480*36^n+821)/7

Base 40:

S{Q}d: (3440*40^n+37)/3

sweety439 2020-10-20 13:31

Base 25:

F{O}KO: 9375*25^n+524
FO{K}O: (56375*25^n+19)/6
LO{L}8: (109975*25^n-111)/8 [need not to be searched if a smaller prime for the "O{L}8: (4975*25^n-111)/8" family were found]
M{1}F1: (330625*25^n+8399)/24
M1{0}8: 13775*25^n+8

Base 28:

O{A}F: (18424*28^n+125)/27

Base 35:

LAA{E}6: (15520820*35^n-143)/17
{L}E6: (25725*35^n-8861)/34
P0{P}G: (1042125*35^n-331)/34
{Q}PEM: (557375*35^n-28046)/17
RU{A}C: (580300*35^n+29)/17
W{P}4: (38955*35^n-739)/34
{X}MLX: (1414875*35^n-472463)/34
X{M}Y: (20020*35^n+193)/17

sweety439 2020-10-20 15:49

Base 27:

8{0}9A: 5832*27^n+253
999{G}: (88577*27^n-8)/13
C{L}E: (8991*27^n-203)/26
E{I}F8: (139239*27^n-1192)/13
{F}9FM: (295245*27^n-113557)/26

Base 48:

A{0}SP: 23040*48^n+1369
C{e}Z: (28992*48^n-275)/47
{K}IP: (46080*48^n-4297)/47
a{0}1: 1728*48^n+1
eL{0}Z: 93168*48^n+35
jc{e}Z: (4960608*48^n-275)/47

sweety439 2020-10-20 16:26

The "minimal prime problem" is solved only in bases 2~16, 18, 20, 22~24, 30, 42, and maybe 60

[CODE]
b, length of largest minimal prime base b, number of minimal primes base b
2, 2, 2
3, 3, 3
4, 2, 3
5, 5, 8
6, 5, 7
7, 5, 9
8, 9, 15
9, 4, 12
10, 8, 26
11, 45, 152
12, 8, 17
13, 32021, 228
14, 86, 240
15, 107, 100
16, 3545, 483
18, 33, 50
20, 449, 651
22, 764, 1242
23, 800874, 6021
24, 100, 306
30, 1024, 220
42, 487, 4551
60, 1938, ?
[/CODE]

sweety439 2020-10-21 16:06

Some minimal (probable) primes with bases 28<=b<=50 not shown in [URL="https://github.com/RaymondDevillers/primes"]https://github.com/RaymondDevillers/primes[/URL]: (and hence some unsolved families can be removed)

Base 37: (families FY{a} and R8{a} can be removed)

590*37^22021-1 (= FY{a_22021})
1008*37^20895-1 (= R8{a_20895})

Base 40: (family Qa{U}X can be removed)

(13998*40^12381+29)/13 (= Qa{U_12380}X)

Base 45: (families O{0}1 and AO{0}1 can be removed, and hence families O{0}1F1, O{0}ZZ1, unless they have small (probable) primes)

24*45^18522+1 (= O{0_18521}1)
474*45^44791+1 (= AO{0_44790}1) [this prime is not minimal prime]

Base 49: (families 11c{0}1, Fd{0}1, SL{m} and Yd{m} can be removed, and hence families S6L{m}, YUUd{m}, YUd{m}, unless they have small (probable) primes)

2488*49^29737+1 (= 11c{0_29736}1)
774*49^18341+1 (= Fd{0_18340}1)
1394*49^52698-1 (= SL{m_52698})
1706*49^16337-1 (= Yd{m_16337})

sweety439 2020-10-21 17:15

Although the test limit of all families in [URL="https://github.com/RaymondDevillers/primes"]https://github.com/RaymondDevillers/primes[/URL] are all 10K, but some families are in fact already tested to much higher....

Base 25:

EF{O}, 366*25^n-1: 260K, see [URL="http://www.noprimeleftbehind.net/crus/Riesel-conjectures.htm"]http://www.noprimeleftbehind.net/crus/Riesel-conjectures.htm[/URL]

Base 31:

F{G}, (1*31^n+1)/2: 2^19-2, see [URL="http://www.fermatquotient.com/PrimSerien/GenFermOdd.txt"]http://www.fermatquotient.com/PrimSerien/GenFermOdd.txt[/URL]

Base 32:

4{0}1, 4*32^n+1: (2^33-7)/5, see [URL="http://www.prothsearch.com/fermat.html"]http://www.prothsearch.com/fermat.html[/URL]
G{0}1, 16*32^n+1: (2^34-9)/5, see [URL="http://www.prothsearch.com/fermat.html"]http://www.prothsearch.com/fermat.html[/URL]
UG{0}1, 976*32^n+1: 560K, see [URL="http://www.prothsearch.com/riesel1.html"]http://www.prothsearch.com/riesel1.html[/URL]

Base 38:

1{0}1 1*38^n+1: 2^24-2, see [URL="http://www.primegrid.com/stats_genefer.php"]http://www.primegrid.com/stats_genefer.php[/URL]

Base 45:

9W1{0}1 19666*45^n+1: 100K, see [URL="http://www.noprimeleftbehind.net/crus/Sierp-conjectures.htm"]http://www.noprimeleftbehind.net/crus/Sierp-conjectures.htm[/URL]

Base 46:

d4{0}1, 1798*46^n+1: 500K, see [URL="http://www.noprimeleftbehind.net/crus/Sierp-conjectures.htm"]http://www.noprimeleftbehind.net/crus/Sierp-conjectures.htm[/URL]

Base 48:

a{0}1, 36*48^n+1: 500K, see [URL="http://www.noprimeleftbehind.net/crus/Sierp-conjectures.htm"]http://www.noprimeleftbehind.net/crus/Sierp-conjectures.htm[/URL]

Base 50:

1{0}1 1*50^n+1: 2^24-2, see [URL="http://www.primegrid.com/stats_genefer.php"]http://www.primegrid.com/stats_genefer.php[/URL]

sweety439 2020-10-30 23:05

Unsolved families which are CRUS Sierpinski/Riesel problems but with k's > CK:

Base 32:

G{0}1: 16*32^n+1
UG{0}1: 976*32^n+1

Base 33:

FFF{W}: 16846*33^n-1

Base 41:

FZ{0}1: 650*41^n+1
R0R8{0}1: 1861982*41^n+1
S{0}1: 28*41^n+1
XL4{0}1: 56338*41^n+1
Z098{0}1: 2412612*41^n+1
Z0R{0}1: 58862*41^n+1
EF{e}: 590*41^n-1
PI{e}: 1044*41^n-1
UFM{e}: 51068*41^n-1
UX{e}: 1264*41^n-1
XOC{e}: 56470*41^n-1
XQO{e}: 56564*41^n-1
XQXXXX{e}: 3899055672*41^n-1
XQ{e}: 1380*41^n-1

Base 43:

Y6{0}1: 1468*43^n+1
6XF{0}1: 12528*43^n+1
8Q6{0}1: 15916*43^n+1
XZZ{g}: 62558*43^n-1
YFa{g}: 63548*43^n-1
dcU{g}: 73776*43^n-1
4ZZZ{g}: 384284*43^n-1
8OR{g}: 15852*43^n-1
9QQ{g}: 17786*43^n-1
FFFFFFFQ{g}: 4174357242012*43^n-1
FFFQ{g}: 1221012*43^n-1

sweety439 2020-10-30 23:48

All smallest generalized repunit prime base b are minimal prime base b, since they are of the form {1} in base b, for the smallest generalized repunit (probable) prime base b for b<=1024, see [URL="https://raw.githubusercontent.com/xayahrainie4793/Sierpinski-Riesel-for-fixed-k-and-variable-base/master/Riesel%20k1.txt"]https://raw.githubusercontent.com/xayahrainie4793/Sierpinski-Riesel-for-fixed-k-and-variable-base/master/Riesel%20k1.txt[/URL]

All smallest generalized Fermat prime base b (for even b) and all smallest generalized half Fermat prime base b (for odd b) are minimal prime base b, unless (b-1)/2 is prime for odd b, since they are of the form 1{0}1 in base b (for even b) or {(b-1)/2}(b+1)/2 in base b (for odd b), for the smallest generalized (half) Fermat (probable) prime base b for b<=1024, see [URL="https://raw.githubusercontent.com/xayahrainie4793/Sierpinski-Riesel-for-fixed-k-and-variable-base/master/Sierp%20k1.txt"]https://raw.githubusercontent.com/xayahrainie4793/Sierpinski-Riesel-for-fixed-k-and-variable-base/master/Sierp%20k1.txt[/URL]

sweety439 2020-10-31 00:02

There are no known generalized repunit (probable) primes in these bases <= 1024: (search limit: 100000)

{185, 269, 281, 380, 384, 385, 394, 452, 465, 511, 574, 601, 631, 632, 636, 711, 713, 759, 771, 795, 861, 866, 881, 938, 948, 951, 956, 963, 1005, 1015}

There are no known generalized (half) Fermat (probable) primes in these bases <= 1024: (search limit: 2^22 for GFN for even bases, 2^18 for half GFN for odd bases)

{31, 38, 50, 55, 62, 63, 67, 68, 77, 83, 86, 89, 91, 92, 97, 98, 99, 104, 107, 109, 122, 123, 127, 135, 137, 143, 144, 147, 149, 151, 155, 161, 168, 179, 182, 183, 186, 189, 197, 200, 202, 207, 211, 212, 214, 215, 218, 223, 227, 233, 235, 241, 244, 246, 247, 249, 252, 255, 257, 258, 263, 265, 269, 281, 283, 285, 286, 287, 291, 293, 294, 298, 302, 303, 304, 307, 308, 311, 319, 322, 324, 327, 338, 344, 347, 351, 354, 355, 356, 359, 362, 367, 368, 369, 377, 380, 383, 387, 389, 390, 394, 398, 401, 402, 404, 407, 410, 411, 413, 416, 417, 422, 423, 424, 437, 439, 443, 446, 447, 450, 454, 458, 467, 468, 469, 473, 475, 480, 482, 483, 484, 489, 493, 495, 497, 500, 509, 511, 514, 515, 518, 524, 528, 530, 533, 534, 538, 547, 549, 552, 555, 558, 563, 564, 572, 574, 578, 580, 590, 591, 593, 597, 601, 602, 603, 604, 608, 611, 615, 619, 620, 622, 626, 627, 629, 632, 635, 637, 638, 645, 647, 648, 650, 651, 653, 655, 659, 662, 663, 666, 667, 668, 670, 671, 675, 678, 679, 683, 684, 687, 691, 692, 694, 698, 706, 707, 709, 712, 720, 722, 724, 731, 734, 735, 737, 741, 743, 744, 746, 749, 752, 753, 754, 755, 759, 762, 766, 767, 770, 771, 773, 775, 783, 785, 787, 792, 794, 797, 802, 806, 807, 809, 812, 813, 814, 818, 823, 825, 836, 840, 842, 844, 848, 849, 851, 853, 854, 867, 868, 870, 872, 873, 878, 887, 888, 889, 893, 896, 899, 902, 903, 904, 907, 908, 911, 915, 922, 923, 924, 926, 927, 932, 937, 938, 939, 941, 942, 943, 944, 945, 947, 948, 953, 954, 958, 961, 964, 967, 968, 974, 975, 977, 978, 980, 983, 987, 988, 993, 994, 998, 999, 1002, 1003, 1006, 1009, 1014, 1016}

sweety439 2020-10-31 00:05

[QUOTE=sweety439;561623]There are no known generalized repunit (probable) primes in these bases <= 1024: (search limit: 100000)

{185, 269, 281, 380, 384, 385, 394, 452, 465, 511, 574, 601, 631, 632, 636, 711, 713, 759, 771, 795, 861, 866, 881, 938, 948, 951, 956, 963, 1005, 1015}

There are no known generalized (half) Fermat (probable) primes in these bases <= 1024: (search limit: 2^22 for GFN for even bases, 2^18 for half GFN for odd bases)

{31, 38, 50, 55, 62, 63, 67, 68, 77, 83, 86, 89, 91, 92, 97, 98, 99, 104, 107, 109, 122, 123, 127, 135, 137, 143, 144, 147, 149, 151, 155, 161, 168, 179, 182, 183, 186, 189, 197, 200, 202, 207, 211, 212, 214, 215, 218, 223, 227, 233, 235, 241, 244, 246, 247, 249, 252, 255, 257, 258, 263, 265, 269, 281, 283, 285, 286, 287, 291, 293, 294, 298, 302, 303, 304, 307, 308, 311, 319, 322, 324, 327, 338, 344, 347, 351, 354, 355, 356, 359, 362, 367, 368, 369, 377, 380, 383, 387, 389, 390, 394, 398, 401, 402, 404, 407, 410, 411, 413, 416, 417, 422, 423, 424, 437, 439, 443, 446, 447, 450, 454, 458, 467, 468, 469, 473, 475, 480, 482, 483, 484, 489, 493, 495, 497, 500, 509, 511, 514, 515, 518, 524, 528, 530, 533, 534, 538, 547, 549, 552, 555, 558, 563, 564, 572, 574, 578, 580, 590, 591, 593, 597, 601, 602, 603, 604, 608, 611, 615, 619, 620, 622, 626, 627, 629, 632, 635, 637, 638, 645, 647, 648, 650, 651, 653, 655, 659, 662, 663, 666, 667, 668, 670, 671, 675, 678, 679, 683, 684, 687, 691, 692, 694, 698, 706, 707, 709, 712, 720, 722, 724, 731, 734, 735, 737, 741, 743, 744, 746, 749, 752, 753, 754, 755, 759, 762, 766, 767, 770, 771, 773, 775, 783, 785, 787, 792, 794, 797, 802, 806, 807, 809, 812, 813, 814, 818, 823, 825, 836, 840, 842, 844, 848, 849, 851, 853, 854, 867, 868, 870, 872, 873, 878, 887, 888, 889, 893, 896, 899, 902, 903, 904, 907, 908, 911, 915, 922, 923, 924, 926, 927, 932, 937, 938, 939, 941, 942, 943, 944, 945, 947, 948, 953, 954, 958, 961, 964, 967, 968, 974, 975, 977, 978, 980, 983, 987, 988, 993, 994, 998, 999, 1002, 1003, 1006, 1009, 1014, 1016}[/QUOTE]

The GFN for these bases (always minimal primes):

{38, 50, 62, 68, 86, 92, 98, 104, 122, 144, 168, 182, 186, 200, 202, 212, 214, 218, 244, 246, 252, 258, 286, 294, 298, 302, 304, 308, 322, 324, 338, 344, 354, 356, 362, 368, 380, 390, 394, 398, 402, 404, 410, 416, 422, 424, 446, 450, 454, 458, 468, 480, 482, 484, 500, 514, 518, 524, 528, 530, 534, 538, 552, 558, 564, 572, 574, 578, 580, 590, 602, 604, 608, 620, 622, 626, 632, 638, 648, 650, 662, 666, 668, 670, 678, 684, 692, 694, 698, 706, 712, 720, 722, 724, 734, 744, 746, 752, 754, 762, 766, 770, 792, 794, 802, 806, 812, 814, 818, 836, 840, 842, 844, 848, 854, 868, 870, 872, 878, 888, 896, 902, 904, 908, 922, 924, 926, 932, 938, 942, 944, 948, 954, 958, 964, 968, 974, 978, 980, 988, 994, 998, 1002, 1006, 1014, 1016}

The half GFN for these bases are also minimal primes:

{31, 55, 67, 77, 89, 91, 97, 99, 109, 127, 137, 149, 151, 155, 161, 183, 189, 197, 211, 223, 233, 235, 241, 247, 249, 257, 265, 269, 281, 283, 285, 287, 291, 293, 307, 311, 319, 351, 355, 367, 369, 377, 389, 401, 407, 411, 413, 417, 437, 439, 443, 469, 473, 475, 489, 493, 495, 497, 509, 511, 533, 547, 549, 591, 593, 597, 601, 603, 611, 619, 629, 637, 645, 647, 651, 653, 655, 659, 667, 671, 679, 683, 687, 691, 709, 731, 737, 741, 743, 749, 753, 755, 771, 773, 775, 783, 785, 787, 797, 807, 809, 813, 823, 825, 849, 851, 853, 873, 889, 893, 903, 907, 911, 937, 939, 941, 943, 945, 947, 953, 961, 967, 977, 987, 993, 1003, 1009}

However, the half GFN for these bases are not minimal primes, since (b-1)/2 is prime:

{63, 83, 107, 123, 135, 143, 147, 179, 207, 215, 227, 255, 263, 303, 327, 347, 359, 383, 387, 423, 447, 467, 483, 515, 555, 563, 615, 627, 635, 663, 675, 707, 735, 759, 767, 867, 887, 899, 915, 923, 927, 975, 983, 999}

sweety439 2020-10-31 00:09

The remain k < b (also including k > CK, if k < b, e.g. 28*41^n+1 and 27*34^n-1) in CRUS corresponding to minimal primes to base b if and only if:

* In Sierpinski case, k is not prime (since it is k{0}1 in base b)
* In Riesel case, neither k-1 nor b-1 is prime (since it is (k-1){(b-1)} in base b)

e.g. the smallest prime of the form 4*53^n+1 (already searched to 1.65M) will be minimal prime base 53, if it exists (CRUS conjectured that they all exist)

sweety439 2020-11-09 18:15

[QUOTE=sweety439;561624]The GFN for these bases (always minimal primes):

{38, 50, 62, 68, 86, 92, 98, 104, 122, 144, 168, 182, 186, 200, 202, 212, 214, 218, 244, 246, 252, 258, 286, 294, 298, 302, 304, 308, 322, 324, 338, 344, 354, 356, 362, 368, 380, 390, 394, 398, 402, 404, 410, 416, 422, 424, 446, 450, 454, 458, 468, 480, 482, 484, 500, 514, 518, 524, 528, 530, 534, 538, 552, 558, 564, 572, 574, 578, 580, 590, 602, 604, 608, 620, 622, 626, 632, 638, 648, 650, 662, 666, 668, 670, 678, 684, 692, 694, 698, 706, 712, 720, 722, 724, 734, 744, 746, 752, 754, 762, 766, 770, 792, 794, 802, 806, 812, 814, 818, 836, 840, 842, 844, 848, 854, 868, 870, 872, 878, 888, 896, 902, 904, 908, 922, 924, 926, 932, 938, 942, 944, 948, 954, 958, 964, 968, 974, 978, 980, 988, 994, 998, 1002, 1006, 1014, 1016}

The half GFN for these bases are also minimal primes:

{31, 55, 67, 77, 89, 91, 97, 99, 109, 127, 137, 149, 151, 155, 161, 183, 189, 197, 211, 223, 233, 235, 241, 247, 249, 257, 265, 269, 281, 283, 285, 287, 291, 293, 307, 311, 319, 351, 355, 367, 369, 377, 389, 401, 407, 411, 413, 417, 437, 439, 443, 469, 473, 475, 489, 493, 495, 497, 509, 511, 533, 547, 549, 591, 593, 597, 601, 603, 611, 619, 629, 637, 645, 647, 651, 653, 655, 659, 667, 671, 679, 683, 687, 691, 709, 731, 737, 741, 743, 749, 753, 755, 771, 773, 775, 783, 785, 787, 797, 807, 809, 813, 823, 825, 849, 851, 853, 873, 889, 893, 903, 907, 911, 937, 939, 941, 943, 945, 947, 953, 961, 967, 977, 987, 993, 1003, 1009}

However, the half GFN for these bases are not minimal primes, since (b-1)/2 is prime:

{63, 83, 107, 123, 135, 143, 147, 179, 207, 215, 227, 255, 263, 303, 327, 347, 359, 383, 387, 423, 447, 467, 483, 515, 555, 563, 615, 627, 635, 663, 675, 707, 735, 759, 767, 867, 887, 899, 915, 923, 927, 975, 983, 999}[/QUOTE]

These bases are the bases <= 1024 which is not perfect odd power (of the form m^r with odd r>1) whose "minimal prime program" have GFN or half GFN remain, for the bases <= 1024 which is perfect odd power (of the form m^r with odd r>1):

* Cubes:

** Base 8: GFN in base 2 are either 2{0}1 or 4{0}1 in base 8, however, 2 and 401 are primes, thus, base 8 does not have GFN or half GFN remain.

** Base 27: half GFN in base 3 are either 1{D}E or 4{D}E in base 27, however, D is prime, thus, base 27 does not have GFN or half GFN remain.

** Base 64: GFN in base 2 are either 4{0}1 or G{0}1 in base 64, however, 41 and G01 are primes, thus, base 64 does not have GFN or half GFN remain.

** Base 125: half GFN in base 5 are either 2:{62}:63 or 12:{62}:63 in base 125, however, 2 is prime, but the family 12:{62}:63 does not have any known (probable) prime (the only known half GFN (probable) primes in base 5 are 3, 13, 2:63), thus, [B][I]base 125 has half GFN remain.[/I][/B]

** Base 216: GFN in base 6 are either 6:{0}:1 or 36:{0}:1 in base 216, however, 6:1 is prime, but the family 36:{0}:1 does not have any known prime (the only known GFN primes in base 6 are 7, 37, 6:1), thus, [B][I]base 216 has GFN remain.[/I][/B]

** Base 343: half GFN in base 7 are either 3:{171}:172 or 24:{171}:172 in base 343, however, 3 is prime, but the family 24:{171}:172 does not have any known (probable) prime (the only known half GFN (probable) prime in base 7 is 3:172), thus, [B][I]base 343 has half GFN remain.[/I][/B]

** Base 512: GFN in base 2 are 2:{0}:1, 4:{0}:1, 16:{0}:1, 32:{0}:1, 128:{0}:1, or 256:{0}:1 in base 512, however, 2 and 128:1 are primes, but the families 4:{0}:1, 16:{0}:1, 32:{0}:1, 256:{0}:1 do not have any known prime (the only known GFN primes in base 2 are 3, 5, 17, 257, 128:1), thus, [B][I]base 512 has GFN remain.[/I][/B]

** Base 729: half GFN in base 3 are either 4:{364}:365 or 40:{364}:365 in base 729, however, 40:364:365 and 4:364:364:364:364:365 are primes, thus, base 729 does not have GFN or half GFN remain.

** Base 1000: GFN in base 10 are either 10:{0}:1 or 100:{0}:1 in base 1000, and both families do not have any known prime (the only known GFN primes in base 10 are 11 and 101), thus, [B][I]base 1000 has GFN remain.[/I][/B]

* 5th powers:

** Base 32: GFN in base 2 are 2{0}1, 4{0}1, 8{0}1, or G{0}1 in base 32, however, 2 and 81 are primes, but the families 4{0}1 and G{0}1 do not have any known prime (the only known GFN primes in base 2 are 3, 5, H, 81, 2001), thus, [B][I]base 32 has GFN remain.[/I][/B]

** Base 243: half GFN in base 3 are 1:{121}:122, 4:{121}:122, 13:{121}:122, or 40:{121}:122 in base 243, however, 1:121:121:122, 4:121, 13, 40:121:121:121:121:121:121:121:121:121:121:121:122 are primes, thus, base 243 does not have GFN or half GFN remain.

** Base 1024: GFN in base 2 are 4:{0}:1, 16:{0}:1, 64:{0}:1, or 256:{0}:1 in base 1024, however, 64:1 is prime, but the families 4:{0}:1, 16:{0}:1, 256:{0}:1 do not have any known prime (the only known GFN primes in base 2 are 3, 5, 17, 257, 64:1), thus, [B][I]base 1024 has GFN remain.[/I][/B]

* 7th powers:

** Base 128: GFN in base 2 are 2:{0}:1, 4:{0}:1, or 16:{0}:1 in base 128, however, 2 and 4:0:1 are primes, but the family 16:{0}:1 do not have any known prime (the only known GFN primes in base 2 are 3, 5, 17, 2:1, 4:0:1), thus, [B][I]base 128 has GFN remain.[/I][/B]

sweety439 2020-11-09 18:21

There are about exp(gamma*k) minimal primes in base n, where k = number of 2-digit numbers [I]xy[/I] in base n such that none of [I]x[/I], [I]y[/I], [I]xy[/I] are primes, [I]x[/I] != 0, gcd([I]y[/I],n) = 1

where exp(x) = e^x (e is [URL="https://en.wikipedia.org/wiki/E_(mathematical_constant)"]the base of the natural logarithm[/URL] (2.718281828...), gamma is [URL="https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant"]Euler–Mascheroni constant[/URL] (0.5772156649...))

Also, there are about exp(gamma*k) minimal strings of primes with >=2 digits in base n (see thread [URL="https://mersenneforum.org/showthread.php?t=24972"]https://mersenneforum.org/showthread.php?t=24972[/URL]), where k = number of 2-digit numbers [I]xy[/I] in base n such that [I]xy[/I] is not prime, [I]x[/I] != 0, gcd([I]y[/I],n) = 1

sweety439 2020-11-10 16:21

[QUOTE=sweety439;562748]There are about exp(gamma*k) minimal primes in base n, where k = number of 2-digit numbers [I]xy[/I] in base n such that none of [I]x[/I], [I]y[/I], [I]xy[/I] are primes, [I]x[/I] != 0, gcd([I]y[/I],n) = 1

where exp(x) = e^x (e is [URL="https://en.wikipedia.org/wiki/E_(mathematical_constant)"]the base of the natural logarithm[/URL] (2.718281828...), gamma is [URL="https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant"]Euler–Mascheroni constant[/URL] (0.5772156649...))

Also, there are about exp(gamma*k) minimal strings of primes with >=2 digits in base n (see thread [URL="https://mersenneforum.org/showthread.php?t=24972"]https://mersenneforum.org/showthread.php?t=24972[/URL]), where k = number of 2-digit numbers [I]xy[/I] in base n such that [I]xy[/I] is not prime, [I]x[/I] != 0, gcd([I]y[/I],n) = 1[/QUOTE]

The reason is if and only if a 2-digit number [I]xy[/I] satisfies all these condition (none of [I]x[/I], [I]y[/I], [I]xy[/I] are primes, [I]x[/I] != 0, gcd([I]y[/I],n) = 1), then [I]xy[/I] can be the first and last digit of a "base n minimal prime" with >=3 digits (if we require the primes have >=2 digits, then the conditions [I]x[/I] is not prime, [I]y[/I] is not prime, are both not needed, only need [I]xy[/I] is not prime, [I]x[/I] != 0, gcd([I]y[/I],n) = 1)

The k for the original case (i.e. including the single-digit primes)

[CODE]
base,k
2,0
3,1
4,0
5,4
6,1
7,5
8,3
9,8
10,5
11,27
12,2
13,38
14,10
15,23
16,17
17,84
18,4
19,108
20,17
21,59
22,30
23,164
24,9
25,151
26,57
27,136
28,55
29,307
30,8
31,350
32,87
33,190
34,111
35,282
36,42
37,539
38,144
39,289
40,107
41,678
42,31
43,736
44,169
45,295
46,227
47,892
48,59
49,804
50,160
51,543
52,286
53,1194
54,85
55,842
56,284
57,731
58,416
59,1545
60,47
61,1627
62,464
63,738
64,508
65,1248
66,144
67,2031
68,537
69,1101
70,265
71,2296
72,190
73,2404
74,676
75,936
76,696
77,1943
78,203
79,2867
80,503
81,1623
82,912
83,3179
84,150
85,2275
86,999
87,1865
88,911
89,3750
90,110
91,2865
92,1121
93,2182
94,1285
95,3009
96,456
97,4603
98,1012
99,2249
100,901
101,4994
102,420
103,5158
104,1347
105,1500
106,1635
107,5562
108,539
109,5725
110,812
111,3123
112,1300
113,6178
114,502
115,4391
116,1852
117,3231
118,2048
119,5209
120,273
121,6478
122,2286
123,4081
124,2313
125,5810
126,536
127,8241
128,2568
[/CODE]

The k for the case for prime with >=2 digits:

[CODE]
base,k
2,0
3,2
4,2
5,10
6,2
7,25
8,14
9,30
10,15
11,75
12,15
13,111
14,40
15,70
16,72
17,202
18,43
19,260
20,82
21,163
22,126
23,394
24,88
25,375
26,187
27,348
28,196
29,648
30,88
31,749
32,335
33,470
34,348
35,627
36,221
37,1089
38,450
39,684
40,385
41,1350
42,231
43,1495
44,579
45,764
46,685
47,1802
48,425
49,1674
50,628
51,1237
52,846
53,2311
54,549
55,1742
56,891
57,1575
58,1138
59,2894
60,458
61,3099
62,1316
63,1701
64,1470
65,2512
66,724
67,3766
68,1539
69,2370
70,1021
71,4245
72,1034
73,4500
74,1927
75,2242
76,1964
77,3802
78,1076
79,5295
80,1716
81,3495
82,2395
83,5861
84,1109
85,4476
86,2654
87,3879
88,2521
89,6768
90,1142
91,5466
92,2970
93,4467
94,3202
95,5671
96,1922
97,8078
98,2914
99,4697
100,2756
101,8774
102,1984
103,9137
104,3656
105,3683
106,4130
107,9883
108,2480
109,10270
110,2942
111,6478
112,3859
113,11051
114,2551
115,8490
116,4876
117,6765
118,5170
119,9691
120,2152
121,11515
122,5547
123,8024
124,5614
125,10609
126,2682
127,14030
128,6259
[/CODE]

sweety439 2020-11-10 16:28

[QUOTE=sweety439;562832]The reason is if and only if a 2-digit number [I]xy[/I] satisfies all these condition (none of [I]x[/I], [I]y[/I], [I]xy[/I] are primes, [I]x[/I] != 0, gcd([I]y[/I],n) = 1), then [I]xy[/I] can be the first and last digit of a "base n minimal prime" with >=3 digits (if we require the primes have >=2 digits, then the conditions [I]x[/I] is not prime, [I]y[/I] is not prime, are both not needed, only need [I]xy[/I] is not prime, [I]x[/I] != 0, gcd([I]y[/I],n) = 1)

The k for the original case (i.e. including the single-digit primes)

[CODE]
base,k
2,0
3,1
4,0
5,4
6,1
7,5
8,3
9,8
10,5
11,27
12,2
13,38
14,10
15,23
16,17
17,84
18,4
19,108
20,17
21,59
22,30
23,164
24,9
25,151
26,57
27,136
28,55
29,307
30,8
31,350
32,87
33,190
34,111
35,282
36,42
37,539
38,144
39,289
40,107
41,678
42,31
43,736
44,169
45,295
46,227
47,892
48,59
49,804
50,160
51,543
52,286
53,1194
54,85
55,842
56,284
57,731
58,416
59,1545
60,47
61,1627
62,464
63,738
64,508
65,1248
66,144
67,2031
68,537
69,1101
70,265
71,2296
72,190
73,2404
74,676
75,936
76,696
77,1943
78,203
79,2867
80,503
81,1623
82,912
83,3179
84,150
85,2275
86,999
87,1865
88,911
89,3750
90,110
91,2865
92,1121
93,2182
94,1285
95,3009
96,456
97,4603
98,1012
99,2249
100,901
101,4994
102,420
103,5158
104,1347
105,1500
106,1635
107,5562
108,539
109,5725
110,812
111,3123
112,1300
113,6178
114,502
115,4391
116,1852
117,3231
118,2048
119,5209
120,273
121,6478
122,2286
123,4081
124,2313
125,5810
126,536
127,8241
128,2568
[/CODE]

The k for the case for prime with >=2 digits:

[CODE]
base,k
2,0
3,2
4,2
5,10
6,2
7,25
8,14
9,30
10,15
11,75
12,15
13,111
14,40
15,70
16,72
17,202
18,43
19,260
20,82
21,163
22,126
23,394
24,88
25,375
26,187
27,348
28,196
29,648
30,88
31,749
32,335
33,470
34,348
35,627
36,221
37,1089
38,450
39,684
40,385
41,1350
42,231
43,1495
44,579
45,764
46,685
47,1802
48,425
49,1674
50,628
51,1237
52,846
53,2311
54,549
55,1742
56,891
57,1575
58,1138
59,2894
60,458
61,3099
62,1316
63,1701
64,1470
65,2512
66,724
67,3766
68,1539
69,2370
70,1021
71,4245
72,1034
73,4500
74,1927
75,2242
76,1964
77,3802
78,1076
79,5295
80,1716
81,3495
82,2395
83,5861
84,1109
85,4476
86,2654
87,3879
88,2521
89,6768
90,1142
91,5466
92,2970
93,4467
94,3202
95,5671
96,1922
97,8078
98,2914
99,4697
100,2756
101,8774
102,1984
103,9137
104,3656
105,3683
106,4130
107,9883
108,2480
109,10270
110,2942
111,6478
112,3859
113,11051
114,2551
115,8490
116,4876
117,6765
118,5170
119,9691
120,2152
121,11515
122,5547
123,8024
124,5614
125,10609
126,2682
127,14030
128,6259
[/CODE][/QUOTE]

This is why base 34 is harder than base 17, base 38 is harder than base 19, but base 42 is easier than base 21

[CODE]
base number of unsolved families when searched to 10000 digits
17 2
34 33
19 5
38 77
21 3
42 0 (the largest prime has only 487 digits)
[/CODE]

sweety439 2020-11-10 18:13

[QUOTE=sweety439;562748]There are about exp(gamma*k) minimal primes in base n, where k = number of 2-digit numbers [I]xy[/I] in base n such that none of [I]x[/I], [I]y[/I], [I]xy[/I] are primes, [I]x[/I] != 0, gcd([I]y[/I],n) = 1

where exp(x) = e^x (e is [URL="https://en.wikipedia.org/wiki/E_(mathematical_constant)"]the base of the natural logarithm[/URL] (2.718281828...), gamma is [URL="https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant"]Euler–Mascheroni constant[/URL] (0.5772156649...))

Also, there are about exp(gamma*k) minimal strings of primes with >=2 digits in base n (see thread [URL="https://mersenneforum.org/showthread.php?t=24972"]https://mersenneforum.org/showthread.php?t=24972[/URL]), where k = number of 2-digit numbers [I]xy[/I] in base n such that [I]xy[/I] is not prime, [I]x[/I] != 0, gcd([I]y[/I],n) = 1[/QUOTE]

exp(gamma*k) is the excepted value of the number of minimal primes base n, also the except value of the length of the largest minimal prime base n (when written in base n)

sweety439 2020-11-25 08:11

[URL="https://cs.uwaterloo.ca/~cbright/talks/minimal-slides.pdf"]https://cs.uwaterloo.ca/~cbright/talks/minimal-slides.pdf[/URL]

sweety439 2020-11-25 08:43

[QUOTE=sweety439;562747]These bases are the bases <= 1024 which is not perfect odd power (of the form m^r with odd r>1) whose "minimal prime program" have GFN or half GFN remain, for the bases <= 1024 which is perfect odd power (of the form m^r with odd r>1):

* Cubes:

** Base 8: GFN in base 2 are either 2{0}1 or 4{0}1 in base 8, however, 2 and 401 are primes, thus, base 8 does not have GFN or half GFN remain.

** Base 27: half GFN in base 3 are either 1{D}E or 4{D}E in base 27, however, D is prime, thus, base 27 does not have GFN or half GFN remain.

** Base 64: GFN in base 2 are either 4{0}1 or G{0}1 in base 64, however, 41 and G01 are primes, thus, base 64 does not have GFN or half GFN remain.

** Base 125: half GFN in base 5 are either 2:{62}:63 or 12:{62}:63 in base 125, however, 2 is prime, but the family 12:{62}:63 does not have any known (probable) prime (the only known half GFN (probable) primes in base 5 are 3, 13, 2:63), thus, [B][I]base 125 has half GFN remain.[/I][/B]

** Base 216: GFN in base 6 are either 6:{0}:1 or 36:{0}:1 in base 216, however, 6:1 is prime, but the family 36:{0}:1 does not have any known prime (the only known GFN primes in base 6 are 7, 37, 6:1), thus, [B][I]base 216 has GFN remain.[/I][/B]

** Base 343: half GFN in base 7 are either 3:{171}:172 or 24:{171}:172 in base 343, however, 3 is prime, but the family 24:{171}:172 does not have any known (probable) prime (the only known half GFN (probable) prime in base 7 is 3:172), thus, [B][I]base 343 has half GFN remain.[/I][/B]

** Base 512: GFN in base 2 are 2:{0}:1, 4:{0}:1, 16:{0}:1, 32:{0}:1, 128:{0}:1, or 256:{0}:1 in base 512, however, 2 and 128:1 are primes, but the families 4:{0}:1, 16:{0}:1, 32:{0}:1, 256:{0}:1 do not have any known prime (the only known GFN primes in base 2 are 3, 5, 17, 257, 128:1), thus, [B][I]base 512 has GFN remain.[/I][/B]

** Base 729: half GFN in base 3 are either 4:{364}:365 or 40:{364}:365 in base 729, however, 40:364:365 and 4:364:364:364:364:365 are primes, thus, base 729 does not have GFN or half GFN remain.

** Base 1000: GFN in base 10 are either 10:{0}:1 or 100:{0}:1 in base 1000, and both families do not have any known prime (the only known GFN primes in base 10 are 11 and 101), thus, [B][I]base 1000 has GFN remain.[/I][/B]

* 5th powers:

** Base 32: GFN in base 2 are 2{0}1, 4{0}1, 8{0}1, or G{0}1 in base 32, however, 2 and 81 are primes, but the families 4{0}1 and G{0}1 do not have any known prime (the only known GFN primes in base 2 are 3, 5, H, 81, 2001), thus, [B][I]base 32 has GFN remain.[/I][/B]

** Base 243: half GFN in base 3 are 1:{121}:122, 4:{121}:122, 13:{121}:122, or 40:{121}:122 in base 243, however, 1:121:121:122, 4:121, 13, 40:121:121:121:121:121:121:121:121:121:121:121:122 are primes, thus, base 243 does not have GFN or half GFN remain.

** Base 1024: GFN in base 2 are 4:{0}:1, 16:{0}:1, 64:{0}:1, or 256:{0}:1 in base 1024, however, 64:1 is prime, but the families 4:{0}:1, 16:{0}:1, 256:{0}:1 do not have any known prime (the only known GFN primes in base 2 are 3, 5, 17, 257, 64:1), thus, [B][I]base 1024 has GFN remain.[/I][/B]

* 7th powers:

** Base 128: GFN in base 2 are 2:{0}:1, 4:{0}:1, or 16:{0}:1 in base 128, however, 2 and 4:0:1 are primes, but the family 16:{0}:1 do not have any known prime (the only known GFN primes in base 2 are 3, 5, 17, 2:1, 4:0:1), thus, [B][I]base 128 has GFN remain.[/I][/B][/QUOTE]

The smallest generalized repunit prime in base b (if exists) is [I]always[/I] minimal prime in base b, since it is 111...111 in base b

Thus, a given base b which is not perfect power (of the form m^r with r>1) whose "minimal prime program" have generalized repunit prime remain if and only if there are no known generalized repunit prime in base b, such bases <= 1024 (perfect powers excluded) are 185, 269, 281, 380, 384, 385, 394, 452, 465, 511, 574, 601, 631, 632, 636, 711, 713, 759, 771, 795, 861, 866, 881, 938, 948, 951, 956, 963, 1005, 1015

For the bases <= 1024 which is perfect power (of the form m^r with r>1):

* Squares:

** Base 4: GRU in base 2 are 1{3} in base 4, however, 3 is prime, thus, base 4 does not have GRU remain.

** Base 9: GRU in base 3 are 1{4} in base 9, however, 14 is prime, thus, base 9 does not have GRU remain.

** Base 16: GRU in base 2 are either 1{F} or 7{F} in base 16, however, 1F and 7 are primes, thus, base 16 does not have GRU remain.

** Base 25: GRU in base 5 are 1{6} in base 25, however, 16 is prime, thus, base 25 does not have GRU remain.

** Base 36: GRU in base 6 are 1{7} in base 36, however, 7 is prime, thus, base 36 does not have GRU remain.

** Base 49: GRU in base 7 are 1:{8} in base 49, however, 1:8:8 is prime, thus, base 49 does not have GRU remain.

** Base 64: GRU in base 2 are either 1:{63} or 31:{63} in base 64, however, 1:63 and 31 are primes, thus, base 64 does not have GRU remain.

** Base 81: GRU in base 3 are either 1:{40} or 13:{40} in base 81, however, 1:40:40:40 and 13 are primes, thus, base 81 does not have GRU remain.

** Base 100: GRU in base 10 are 1:{11} in base 100, however, 11 is prime, thus, base 100 does not have GRU remain.

** Base 121: GRU in base 11 are 1:{12} in base 121, however, 1:12:12:12:12:12:12:12:12 is prime, thus, base 121 does not have GRU remain.

** Base 144: GRU in base 12 are 1:{13} in base 144, however, 13 is prime, thus, base 144 does not have GRU remain.

...

** Base 1024: GRU in base 2 are 1:{1023}, 7:{1023}, 127:{1023}, or 511:{1023} in base 1024, however, 1:1023:1023:1023, 7, 127, 511:1023 are primes, thus, base 1024 does not have GRU remain.

* Cubes:

** Base 8: GRU in base 2 are either 1{7} or 3{7} in base 8, however, 7 is prime, thus, base 8 does not have GRU remain.

** Base 27: GRU in base 3 are either 1{D} or 4{D} in base 27, however, D is prime, thus, base 27 does not have GRU remain.

** Base 64: GRU in base 2 are either 1:{63} or 31:{63} in base 64, however, 1:63 and 31 are primes, thus, base 64 does not have GRU remain.

** Base 125: GRU in base 5 are either 1:{31} or 6:{31} in base 125, however, 31 is prime, thus, base 125 does not have GRU remain.

** Base 216: GRU in base 6 are either 1:{43} or 7:{43} in base 216, however, 43 is prime, thus, base 216 does not have GRU remain.

** Base 343: GRU in base 7 are either 1:{57} or 8:{57} in base 343, however, 1:57:57:57:57 and 8:57 are primes, thus, base 343 does not have GRU remain.

** Base 512: GRU in base 2 are 1:{511}, 3:{511}, 15:{511}, 31:{511}, 127:{511}, or 255:{511} in base 512, however, 1:511:511, 3, 15:511, 31, 127, 255:511 are primes, thus, base 512 does not have GRU remain.

** Base 729: GRU in base 3 are either 1:{364} or 121:{364} in base 729, however, 1:364 and 121:364:364:364:364:364:364:364:364:364:364:364 are primes, thus, base 729 does not have GRU remain.

** Base 1000: GRU in base 10 are either 1:{111} or 11:{111} in base 1000, however, 1:111:111:111:111:111:111 and 11 are primes, thus, base 1000 does not have GRU remain.

* 5th powers:

** Base 32: GRU in base 2 are 1{V}, 3{V}, 7{V}, or F{V} in base 32, however, V is prime, thus, base 32 does not have GRU remain.

** Base 243: GRU in base 3 are 1:{121}, 4:{121}, 13:{121}, or 40:{121} in base 243, however, 1:121:121:121:121:121:121:121:121:121:121:121:121:121:121, 4:121, 13 are primes, but the family 40:{121} does not have any known (probable) prime (there are no known numbers in [URL="https://oeis.org/A028491"]OEIS A028491[/URL] which is == 4 mod 5), thus, [B][I]base 243 has GRU remain.[/I][/B]

** Base 1024: GRU in base 2 are 1:{1023}, 7:{1023}, 127:{1023}, or 511:{1023} in base 1024, however, 1:1023:1023:1023, 7, 127, 511:1023 are primes, thus, base 1024 does not have GRU remain.

* 7th powers:

** Base 128: GRU in base 2 are 1:{127}, 3:{127}, 7:{127}, 15:{127}, 31:{127}, or 63:{127} in base 128, however, 127 is prime, thus, base 128 does not have GRU remain.

sweety439 2020-11-25 08:50

In [URL="http://www.noprimeleftbehind.net/crus/Sierp-conjectures.htm"]Sierpinski problem[/URL] base b, the prime for a k-value <b is "minimal prime base b" if and only if k is not prime.

In [URL="http://www.noprimeleftbehind.net/crus/Riesel-conjectures.htm"]Riesel problem[/URL] base b, the prime for a k-value <b is "minimal prime base b" if and only if neither k-1 nor b-1 is prime.

However, if we exclude the single-digit primes from the set (i.e. the minimal string of the set of prime numbers >= b in base b, see problem [URL="https://mersenneforum.org/showthread.php?t=24972"]https://mersenneforum.org/showthread.php?t=24972[/URL]), then the prime for Sierpinski/Riesel problems base b for a k-value <b is always "minimal prime base b", this is why the "minimal prime problem" for the prime numbers >= b in base b is more interesting, since single-digit primes are trivial, like that in Sierpinski/Riesel problems base b, n=0 is trivial, since the corresponding number is just k+1 or k-1, and thus CRUS requires n>=1, and of course the CRUS Sierpinski/Riesel problems (requiring n>=1) is much harder than the same problem which n=0 is allowed, similarly, finding the minimal set of the strings for primes in base b with at least two digits in base b is much harder than finding the minimal set of the strings for primes (including the single-digit primes in base b) in base b, e.g.

* In base 7, the largest minimal prime is 11111, but if single-digit primes are excluded, then a much-larger prime 33333333333333331 is minimal prime.

* In base 8, the largest minimal prime is 444444441, but if single-digit primes are excluded, then a much-larger prime 7777777777771 is minimal prime.

* In base 10, the largest minimal prime is 66600049, but if single-digit primes are excluded, then a much-larger prime 555555555551 is minimal prime.

* In base 14, the largest minimal prime is 40[SUB]83[/SUB]49, but if single-digit primes are excluded, then a much-larger prime 4D[SUB]19698[/SUB] is minimal prime.

* In base 17, there are only 2 unsolved families when searched to length 10000, but if single-digit primes are excluded, then a large prime 74[SUB]4904[/SUB] is minimal prime.

* In base 21, there are only 3 unsolved families when searched to length 10000, but if single-digit primes are excluded, then a large prime 5D0[SUB]19848[/SUB]1 is minimal prime.

* In base 30, the largest minimal prime is C0[SUB]1022[/SUB]1, but if single-digit primes are excluded, then a much-larger prime OT[SUB]34205[/SUB] is minimal prime.

* In base 32, there are 78 unsolved families when searched to length 10000, but if single-digit primes are excluded, then the unsolved family S{V} is searched up to length 2000001 by CRUS with no prime found.

* In base 33, there are 33 unsolved families when searched to length 10000, but if single-digit primes are excluded, then a large prime 130[SUB]23614[/SUB]1 is minimal prime.

* In base 35, there are only 15 unsolved families when searched to length 10000, but if single-digit primes are excluded, then a large prime 1B0[SUB]56061[/SUB]1 is minimal prime.

* In base 37, if single-digit primes are excluded, then the unsolved family 2K{0}1 is searched up to length 1000002 by CRUS with no prime found, also another unsolved family {I}J is searched up to length 1048575 by GFN search with no (probable) prime found.

* In base 38, if single-digit primes are excluded, then there are four large known minimal primes 20[SUB]2728[/SUB]1, V0[SUB]1527[/SUB]1, Lb[SUB]1579[/SUB], ab[SUB]136211[/SUB], also the unsolved family 1{0}V is searched up to length 185001 by Peter Košinár with no (probable) prime found.

* In base 42, the largest minimal prime is R[SUB]486[/SUB]1, but if single-digit primes are excluded, then a much-larger prime 2f[SUB]2523[/SUB] is minimal prime.

* In base 43, if single-digit primes are excluded, then the unsolved family 3b{0}1 is searched up to length 1000002 by CRUS with no prime found, also another unsolved family 2{7} is searched up to length 50001 by Dylan Delgado with no (probable) prime found.

* In base 48, if single-digit primes are excluded, then there is a large known minimal prime T0[SUB]133041[/SUB]1.

* In base 60, if single-digit primes are excluded, then the unsolved family Z{x} is searched up to length 100001 by CRUS with no prime found.

References:

[URL="http://www.noprimeleftbehind.net/crus/Sierp-conjectures.htm"]http://www.noprimeleftbehind.net/crus/Sierp-conjectures.htm[/URL]
[URL="http://www.noprimeleftbehind.net/crus/Riesel-conjectures.htm"]http://www.noprimeleftbehind.net/crus/Riesel-conjectures.htm[/URL]
[URL="https://docs.google.com/document/d/e/2PACX-1vReofbA92gRRhzqjKA3TKOqsukineM59WpM56LuRnbhB7bBFSYL6w-aTJ2IpJPWpiyCmPLOSE6gqDrR/pub"]https://docs.google.com/document/d/e/2PACX-1vReofbA92gRRhzqjKA3TKOqsukineM59WpM56LuRnbhB7bBFSYL6w-aTJ2IpJPWpiyCmPLOSE6gqDrR/pub[/URL] (Base 17 7{4} family)
[URL="https://math.stackexchange.com/questions/597234/least-prime-of-the-form-38n31"]https://math.stackexchange.com/questions/597234/least-prime-of-the-form-38n31[/URL] (Base 38 1{0}V family)
[URL="https://github.com/curtisbright/mepn-data"]https://github.com/curtisbright/mepn-data[/URL] (original minimal prime problem, bases 2 to 30)
[URL="https://github.com/RaymondDevillers/primes"]https://github.com/RaymondDevillers/primes[/URL] (original minimal prime problem, bases 28 to 50)

sweety439 2020-11-25 14:56

[QUOTE=sweety439;560430]The "minimal prime problem" is solved only in bases 2~16, 18, 20, 22~24, 30, 42, and maybe 60

[CODE]
b, length of largest minimal prime base b, number of minimal primes base b
2, 2, 2
3, 3, 3
4, 2, 3
5, 5, 8
6, 5, 7
7, 5, 9
8, 9, 15
9, 4, 12
10, 8, 26
11, 45, 152
12, 8, 17
13, 32021, 228
14, 86, 240
15, 107, 100
16, 3545, 483
18, 33, 50
20, 449, 651
22, 764, 1242
23, 800874, 6021
24, 100, 306
30, 1024, 220
42, 4551, 487
60, ?, ? (in theory, <2000 digits)
[/CODE][/QUOTE]

The lower bound of the largest minimal prime in base 60 is e[SUB]1937[/SUB]1, also Q[SUB]896[/SUB]1 is minimal prime in base 60

The values of them are 77327010984551504786304887888912950705175204580639944878112438600952757035876727229378296619277947037764123978846596061647800547824271405420610942504398032526580100809844305805544927484087907616047490338190828917065699765520511128503381872341167737600460647597875122424469309525340927891025212547061188776538264903805527424912087179786849901547205244266878177942527870184920215328514230990454933261585699343368869812084796558411721869822394527700663131350707635393027944180439815096746293426421194665978764581162587927866393205026213755969137701220074489706959966447530447995143405265533839850435707734313891577375215804642516141551699775657946569122025380740434646135054704170314178518948917457077920299428193780905089153629086443760982953552745554032630063069920652615362123725793144110637743473716888605506966189552881692154417121864981473601912302543600701367807908042289806525645841750281185651872533226665585223241511993986508736773286351668957103552353014040845431533864448327266336789760566326440423377001353690565900244559349252519469001825116007514729851712983574622341296162969774717357252465431566117676922668834197449691552002659958493980197122256612229132710589188220351409094828130859660567041139496963915457844074136483182933611723591111024630476224702575651192615747211666681896793532612116567734947534484938472185678092597966368048609549325442879516453824590523188998379435190788947006444708909975051214459423525690882137592842255587521093881402277645744154135012098764172743649344172229163389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186401 and 44237739863175496610471318629567161227581499739702326449443211342477982035718794483071631727522073459377930102398410838554672162663612371413096490082577997717588025268103015103195710515977898833005189244382338257840944719699642630344222584794826781588580542174706455627416628292660455033430459427791568859444909759999806211055982544227289834463933517584500668147475720542564765516991468231198124803963783152542228516984157676464674424474630978346931184024801441861139072461640784439697679231361092862140120023823474610674945003533686787118333313230137931070802812541939817735865901202734962214450795186055471212270838294675126791484852523312122258393734265285929307078713993139831738349121088218059932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271161

sweety439 2020-11-25 15:14

For the minimal problem in base 60, I checked these families: (x is any given digit)

* x:{0}:1
* x:{0}:49 (x not divisible by 7, x != 10)
* {x}:1
* {x}:49 (x not divisible by 7)
* x:{49} (x not divisible by 7)

All these families have known proven primes, except {40}:1, which only has known strong PRP

* x:{14}:49 (x not divisible by 7)
* x:{21}:49 (x not divisible by 7)
* x:{28}:49 (x not divisible by 7)
* x:{35}:49 (x not divisible by 7)
* x:{42}:49 (x not divisible by 7)

Only 46:{42}:49 family has no known primes, even no strong PRPs in this family are known

* {14}:x:49 (x not divisible by 7)
* {21}:x:49 (x not divisible by 7)
* {28}:x:49 (x not divisible by 7)
* {35}:x:49 (x not divisible by 7)
* {42}:x:49 (x not divisible by 7)

All these families have known proven primes, except {42}:30:49, which only has known strong PRP

sweety439 2020-11-26 02:23

[QUOTE=sweety439;564341]For the minimal problem in base 60, I checked these families: (x is any given digit)

* x:{0}:1
* x:{0}:49 (x not divisible by 7, x != 10)
* {x}:1
* {x}:49 (x not divisible by 7)
* x:{49} (x not divisible by 7)

All these families have known proven primes, except {40}:1, which only has known strong PRP

* x:{14}:49 (x not divisible by 7)
* x:{21}:49 (x not divisible by 7)
* x:{28}:49 (x not divisible by 7)
* x:{35}:49 (x not divisible by 7)
* x:{42}:49 (x not divisible by 7)

Only 46:{42}:49 family has no known primes, even no strong PRPs in this family are known

* {14}:x:49 (x not divisible by 7)
* {21}:x:49 (x not divisible by 7)
* {28}:x:49 (x not divisible by 7)
* {35}:x:49 (x not divisible by 7)
* {42}:x:49 (x not divisible by 7)

All these families have known proven primes, except {42}:30:49, which only has known strong PRP[/QUOTE]

46:{42}:49 family has trivial factor of 53, thus not need to be checked.

Also checked these families:

* 10:10:{0}:49
* 10:x:{0}:49 (x = 14, 21, 28, 35, 42, 49)
* x:10:{0}:49 (x = 14, 21, 28, 35, 42, 49)

sweety439 2020-11-26 02:28

Smallest prime in given simple family in base 60:

{x}:1

[CODE]
1,61
2,7321
3,181
4,241
5,18301
6,21961
7,421
8,379574237281
9,541
10,601
11,661
12,208167532693722559227661016949152542372881355921
13,47581
14,51241
15,3294901
16,45548908474561
17,1021
18,65881
19,15024813541
20,1201
21,276772861
22,1321
23,1381
24,316311841
25,5491501
26,44237739863175496610471318629567161227581499739702326449443211342477982035718794483071631727522073459377930102398410838554672162663612371413096490082577997717588025268103015103195710515977898833005189244382338257840944719699642630344222584794826781588580542174706455627416628292660455033430459427791568859444909759999806211055982544227289834463933517584500668147475720542564765516991468231198124803963783152542228516984157676464674424474630978346931184024801441861139072461640784439697679231361092862140120023823474610674945003533686787118333313230137931070802812541939817735865901202734962214450795186055471212270838294675126791484852523312122258393734265285929307078713993139831738349121088218059932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271161
27,1621
28,102481
29,1741
30,1801
31,1861
32,93237738291439869343927223105084745762711864406779661016949121
33,1565743728781
34,1613190508441
35,7688101
36,2161
37,2221
38,2281
39,2341
40,77327010984551504786304887888912950705175204580639944878112438600952757035876727229378296619277947037764123978846596061647800547824271405420610942504398032526580100809844305805544927484087907616047490338190828917065699765520511128503381872341167737600460647597875122424469309525340927891025212547061188776538264903805527424912087179786849901547205244266878177942527870184920215328514230990454933261585699343368869812084796558411721869822394527700663131350707635393027944180439815096746293426421194665978764581162587927866393205026213755969137701220074489706959966447530447995143405265533839850435707734313891577375215804642516141551699775657946569122025380740434646135054704170314178518948917457077920299428193780905089153629086443760982953552745554032630063069920652615362123725793144110637743473716888605506966189552881692154417121864981473601912302543600701367807908042289806525645841750281185651872533226665585223241511993986508736773286351668957103552353014040845431533864448327266336789760566326440423377001353690565900244559349252519469001825116007514729851712983574622341296162969774717357252465431566117676922668834197449691552002659958493980197122256612229132710589188220351409094828130859660567041139496963915457844074136483182933611723591111024630476224702575651192615747211666681896793532612116567734947534484938472185678092597966368048609549325442879516453824590523188998379435190788947006444708909975051214459423525690882137592842255587521093881402277645744154135012098764172743649344172229163389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186401
41,150061
42,2521
43,122412691525381
44,9665041
45,164701
46,606264361
47,172021
48,37957423681
49,10763341
50,3001
51,3061
52,3121
53,3181
54,197641
55,3301
56,3361
57,28550279937155564567041751967467111314451825663380318242711864406779661016949152542372881355932203389830508474576271186440621
58,212281
59,3541
[/CODE]

{x}:49

[CODE]
1,109
2,7369
3,229
4,52718689
5,349
6,409
8,105437329
9,12329714402004875501336027803574282441328813559322033898305084745762711864406779661016989
10,131796649
11,709
12,769
13,829
15,54949
16,1009
17,1069
18,1129
19,250413589
20,1249
22,811681549016949152569
23,1429
24,1489
25,1549
26,1609
27,1669
29,1789
30,109849
31,408569509
32,119904498831584194115132745762711864406779661016949169
33,2029
34,2089
36,3028642546542661941210719954058267766581114796637317680350572474576271186440677966101694915254237288135593220338983050847457627118644067809
37,2269
38,6490719457627129
39,2389
40,146449
41,540366109
43,157429
44,2689
45,2749
46,168409
47,172069
48,6375389621369491525423729
50,3049
51,3109
52,3169
53,3229
54,197689
55,9394462372881349
57,3469
58,3529
59,46655999989
[/CODE]

x:{49}

[CODE]
1,109
2,611389
3,229
4,17389
5,349
6,409
8,411996203389
9,77035957924881355932203389
10,14590162042372436009914299567562900888905762711864406779661016949152542372881355932203389
11,709
12,769
13,829
15,56989
16,1009
17,1069
18,1129
19,71389
20,1249
22,82189
23,1429
24,1489
25,1549
26,1609
27,1669
29,1789
30,110989
31,6875389
32,118189
33,2029
34,2089
36,132589
37,2269
38,2384559087006591915952856949152542372881355932203389
39,2389
40,146989
41,150589
43,4451424541432606372881355932203389
44,2689
45,2749
46,606923389
47,133894812203389
48,10547389
50,3049
51,3109
52,3169
53,3229
54,197389
55,200989
57,3469
58,3529
59,215389
[/CODE]

x:{0}:1

[CODE]
1,61
2,432001
3,181
4,241
5,2406149016991872132210992275783680000000000000000000000000000000000000000001
6,21601
7,421
8,62691331276800000000000001
9,541
10,601
11,661
12,43201
13,168480001
14,10886400001
15,54001
16,57601
17,1021
18,13996800001
19,20370649768045944216583302410995908998024578122182598718037950464000000000000000000000000000000000000000000000000000000000000000000000000000000001
20,1201
21,3527193600000001
22,1321
23,1381
24,5184001
25,90001
26,93601
27,1621
28,100801
29,1741
30,1801
31,1861
32,115201
33,118801
34,122401
35,126001
36,2161
37,2221
38,2281
39,2341
40,8640001
41,531360001
42,2521
43,2006208000001
44,965225828176625664000000000000000000001
45,125971200000001
46,165601
47,2192832000001
48,172801
49,176401
50,3001
51,3061
52,3121
53,3181
54,93551073780643988500363379682469478400000000000000000000000000000000000000000001
55,3301
56,3361
57,205201
58,(trivial factor of 59)
59,3541
[/CODE]

x:{0}:49

[CODE]
1,109
2,93312000049
3,229
4,14449
5,349
6,409
8,6220800049
9,1944049
10,(trivial factor of 59)
11,709
12,769
13,829
15,54049
16,1009
17,1069
18,1129
19,68449
20,1249
22,61585920000049
23,1429
24,1489
25,1549
26,1609
27,1669
29,1789
30,6480049
31,6696049
32,115249
33,2029
34,2089
36,466560049
37,2269
38,136849
39,2389
40,1866240000049
41,1912896000049
43,154849
44,2689
45,2749
46,2146176000049
47,169249
48,172849
50,3049
51,3109
52,3169
53,3229
54,699840049
55,1625362428001224684562289212884750459919231127678405836800000000000000000000000000000000000000000000000000000000000000000000049
57,3469
58,3529
59,12744049
[/CODE]

sweety439 2020-11-26 02:35

x:{14}:49

[CODE]
1,109
2,8089
3,229
4,15289
5,349
6,409
8,1779289
9,33289
10,132675289
11,709
12,769
13,829
15,20055578263423416146440677966101694915289
16,1009
17,1069
18,1129
19,249315289
20,1249
22,1037502915289
23,1429
24,1489
25,1549
26,1609
27,1669
29,1789
30,6531289
31,6747289
32,116089
33,2029
34,2089
36,130489
37,2269
38,495555289
39,2389
40,144889
41,103182884390444449640082580739273165590541602171762902235022709553359196234458364272060077833460415740804281702234241751684562368942580406237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915289
43,155689
44,2689
45,2749
46,465965333694915289
47,10203289
48,37509315289
50,3049
51,3109
52,3169
53,3229
54,702915289
55,11931289
57,3469
58,3529
59,213289
[/CODE]

x:{21}:49

[CODE]
1,109
2,508909
3,229
4,56452909
5,349
6,409
8,30109
9,94286240542372909
10,37309
11,709
12,769
13,829
15,42986782372909
16,1009
17,1069
18,1129
19,69709
20,1249
22,4025817357839737065999049857469767607759032979106716427631968228584180718644067796610169491525423728813559322033898305084745762711864406779661016949152542372909
23,1429
24,1489
25,1549
26,1609
27,1669
29,1789
30,66078257013152542372909
31,112909
32,6988909
33,2029
34,2089
36,101773342372909
37,2269
38,497092909
39,2389
40,31380772909
41,535972909
43,156109
44,2689
45,2749
46,166909
47,170509
48,10444909
50,3049
51,3109
52,3169
53,3229
54,195709
55,717412909
57,3469
58,3529
59,12820909
[/CODE]

x:{28}:49

[CODE]
1,109
2,8929
3,229
4,57990529
5,349
6,409
8,30529
9,34129
10,2262529
11,709
12,769
13,829
15,3342529
16,1009
17,1069
18,1129
19,4206529
20,1249
22,80929
23,1429
24,1489
25,1549
26,1609
27,1669
29,1789
30,394950529
31,113329
32,116929
33,2029
34,2089
36,472710529
37,2269
38,8310529
39,2389
40,8742529
41,4212156168942609355932203389830529
43,9390529
44,2689
45,2749
46,167329
47,1041447436333870756881355932203389830529
48,13781461655186262022942372881355932203389830529
50,3049
51,3109
52,3169
53,3229
54,331946136337921041355932203389830529
55,199729
57,3469
58,3529
59,214129
[/CODE]

x:{35}:49

[CODE]
1,109
2,9349
3,229
4,771484637288149
5,349
6,409
8,30949
9,34549
10,38149
11,709
12,769
13,829
15,56149
16,1009
17,1069
18,1129
19,70549
20,1249
22,81349
23,1429
24,1489
25,1549
26,1609
27,1669
29,1789
30,6608149
31,113749
32,25344488149
33,2029
34,2089
36,131749
37,2269
38,23335844534237288149
39,2389
40,526088149
41,149749
43,33898088149
44,2689
45,2749
46,10064149
47,185120325561205169675135454687984165581220276782105983361193164168670838265752820260904448577571678108045870876576322502449572547744055070802594515527926156691477915758601548938853501303980626387044701079429027352148995318212751455646534728345092572787387347410490834215458172781888350653835992601161966471095319325576754886993561238893441826145675686736477047030489460058140333352185261905102459753937730302319495540099005728377120233422356413887591971257315898743429492383226804915072909057608763313496683212160248130680520291356694770983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288149
48,10496149
50,3049
51,3109
52,3169
53,3229
54,196549
55,12008149
57,3469
58,3529
59,12872149
[/CODE]

x:{42}:49

[CODE]
1,109
2,9769
3,229
4,170945053505084745769
5,349
6,409
8,1881769
9,2097769
10,38569
11,709
12,769
13,829
15,56569
16,1009
17,1069
18,1129
19,70969
20,1249
22,81769
23,1429
24,1489
25,1549
26,1609
27,1669
29,1789
30,110569
31,6849769
32,7065769
33,2029
34,2089
36,132169
37,2269
38,139369
39,2389
40,31657545769
41,150169
43,33990345769
44,2689
45,2749
46,(trivial factor of 53)
47,10305769
48,1767252099905084745769
50,3049
51,3109
52,3169
53,3229
54,11817769
55,200569
57,3469
58,3529
59,12897769
[/CODE]

{14}:x:49

[CODE]
1,3074509
2,31719478566747843550804041300349830508474576271186440677966101694914569
3,11070914629
4,11070914689
5,184514749
6,11070914809
8,50929
9,50989
10,3075049
11,51109
12,51169
13,51229
15,51349
16,3075409
17,8608743701694915469
18,516524622101694915529
19,11070915589
20,184515649
22,51769
23,51829
24,664254915889
25,51949
26,52009
27,52069
29,52189
30,52249
31,39855294916309
32,52369
33,3076429
34,52489
36,52609
37,664254916669
38,30991477326101694916729
39,3076789
40,11070916849
41,664254916909
43,184517029
44,53089
45,53149
46,53690481146394350663097813232332427347712798372881355932203389830508474576271186440677966101694917209
47,53269
48,664254917329
50,86756301967596040677966101694917449
51,11070917509
52,53569
53,53629
54,3077689
55,3147493094329085095522234576271186440677966101694917749
57,30991477326101694917869
58,184517929
59,39855294917989
[/CODE]

{21}:x:49

[CODE]
1,75709
2,10041238653656949152542371769
3,4611829
4,276771889
5,16606371949
6,4612009
8,76129
9,616626663337578078627630562878800705084745762711864406779661016949152542372189
10,76249
11,645936492161087054050399981653446997706215532953486454915466633416169490161247457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372309
12,76369
13,996382372429
15,4612549
16,4612609
17,4612669
18,276772729
19,4612789
20,4612849
22,4612969
23,77029
24,276773089
25,16606373149
26,4613209
27,77269
29,276773389
30,4613449
31,77509
32,77569
33,4613629
34,77689
36,16606373809
37,276773869
38,77929
39,16606373989
40,78049
41,4614109
43,78229
44,59782942374289
45,4614349
46,6071553036900241310806779661016949152542374409
47,276774469
48,61187265753757414256952240162711864406779661016949152542374529
50,78649
51,774786933152542374709
52,996382374769
53,4614829
54,78889
55,52209837304507200077039765027430616624964848906126524755206192493399488812789496523127382219681677062442951316647311186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542374949
57,4615069
58,996382375129
59,276775189
[/CODE]

{28}:x:49

[CODE]
1,81583021005009885675936320216949152542372881355932203389828909
2,85460868854823834608016221386772928746969615932515587546395079909292691525423728813559322033898305084745762711864406779661016949152542372881355932203389828969
3,22141829029
4,101089
5,101149
6,101209
8,6149329
9,6149389
10,101449
11,286958123389829509
12,10410756236111524881355932203389829569
13,369029629
15,101749
16,79710589829809
17,101869
18,101929
19,1328509829989
20,6150049
22,13388318204875932203389830169
23,102229
24,6150289
25,79710589830349
26,102409
27,1328509830469
29,6150589
30,6150649
31,29828045081330194812832118462406904082062665762711864406779661016949152542372881355932203389830709
32,102769
33,102829
34,286958123389830889
36,41126317117261134141412615065804034201951786857394034478949601447152874939439946846072866224064662010793220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389831009
37,103069
38,6151129
39,1328509831189
40,369031249
41,369031309
43,286958123389831429
44,1328509831489
45,103549
46,1033049244203389831609
47,103669
48,6151729
50,1328509831849
51,286958123389831909
52,103969
53,37478722450001489572881355932203389832029
54,104089
55,104149
57,6152269
58,1328509832329
59,6152389
[/CODE]

{35}:x:49

[CODE]
1,81475573154959817379255597463815552667176545024717505666213665960638224320021112459781503325113716943629003292963749951159320447728997238620350548107901686289125472897903137985503182233361374542375162900682265823294796999737443473337843435573308433456959404707058320810457306411455933006101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237286109
2,1660637286169
3,126229
4,17128518426043835517434182302188908474576271186440677966101694915254237286289
5,126349
6,36429318221401447864840677966101694915254237286409
8,77478693315254237286529
9,7686589
10,7686649
11,27677286709
12,99638237286769
13,461286829
15,126949
16,1660637287009
17,461287069
18,1660637287129
19,127189
20,127249
22,607155303690024131080677966101694915254237287369
23,131145545597045212313426440677966101694915254237287429
24,36429318221401447864840677966101694915254237287489
25,127549
26,127609
27,127669
29,27677287789
30,127849
31,358697654237287909
32,461287969
33,21521859254237288029
34,99638237288089
36,7688209
37,1660637288269
38,1660637288329
39,128389
40,128449
41,128509
43,128629
44,461288689
45,128749
46,7688809
47,358697654237288869
48,7688929
50,129049
51,7689109
52,129169
53,129229
54,129289
55,21521859254237289349
57,129469
58,129529
59,129589
[/CODE]

{42}:x:49

[CODE]
1,9223309
2,293439587902707111288657562346647653394212382542384936694711075914089081641468094666645578615570550709924319586579296659981779875032195661701462202096102293874185480241052744144833349365537276799785969205297493379562404092952314178395004440542139367761173708310416661107311234222306240316209631923293822273260390016005704126405409242393725556515881932954120677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084743369
3,151429
4,260268905902788122033898305084743489
5,151549
6,151609
8,151729
9,95158435700243530652412123901049491525423728813559322033898305084743789
10,151849
11,151909
12,151969
13,152029
15,334707955121898305084744149
16,33212744209
17,9224269
18,25826231105084744329
19,152389
20,33212744449
22,1992764744569
23,152629
24,9224689
25,33212744749
26,152809
27,553544869
29,152989
30,1085381915311180600372601407525931962389847751970245597672814187895728453642389622010356871067432479240127281624918875843807895776453427504154910355073723811485480200485147288814532682450893550065346880581428503092670144866199408686377359578222051485037152838513072612496791202198960786455011981346714830632452284175840153078825137962409229301085120863398324900668527102405288924544210878811218940250587703349451751315140419049505572840115309385837985597640170169004994591035237463955094223324926699100962730596525138946332290428960176322975631221744617520009977331177155716098492037390962017969334604994823460496054237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745049
31,3452320032561365140374087785000799083572067796610169491525423728813559322033898305084745109
32,33212745169
33,1992764745229
34,9225289
36,153409
37,153469
38,153529
39,153589
40,153649
41,9225709
43,202385101230008043693559322033898305084745829
44,153889
45,153949
46,430437185084746009
47,9226069
48,1992764746129
50,553546249
51,33212746309
52,154369
53,1204948638438833898305084746429
54,95158435700243530652412123901049491525423728813559322033898305084746489
55,9226549
57,154669
58,33212746729
59,154789
[/CODE]

sweety439 2020-11-26 02:39

{49}:x:49

[CODE]
1,176509
2,10760569
3,176629
4,645800689
5,1807836177355932200749
6,176809
8,8369611932200929
9,176989
10,5179663972035655860472096728181925922711864406779661016949152542372881355932201049
11,177109
12,38748201169
13,645801229
15,3370877628514757222772400494683673158596409477797247719358711849483581786873706143158543146664730075705489224200224093772041630182187652701699645946277442899767500755812009374102776457086216749247209626019900398116606709317609816539188162397141065837083072359107434141070736000398492419524277805139751989637641458276851772548616402672230694356610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932201349
16,177409
17,10761469
18,10761529
19,177589
20,10761649
22,38748201769
23,645801829
24,177889
25,177949
26,645802009
27,178069
29,30130602955932202189
30,178249
31,645802309
32,84346404690718372881355932202369
33,10762429
34,178489
36,178609
37,1093129404791710112542372881355932202669
38,10762729
39,10762789
40,390492614308881355932202849
41,178909
43,179029
44,179089
45,38748203149
46,179209
47,179269
48,409053718397842884147674224095289021756765923247261869559322033898305084745762711864406779661016949152542372881355932203329
50,645803449
51,38748203509
52,10763569
53,10763629
54,179689
55,179749
57,10763869
58,1807836177355932203929
59,179989
[/CODE]

10:x:{0}:49

[CODE]
614,477446400049
621,37309
628,8138880049
635,38149
642,38569
649,140184049
[/CODE]

x:10:{0}:49

[CODE]
850,183600049
1270,76249
1690,101449
2110,3571525142839296000000000000000049
2530,151849
2950,38232000049
[/CODE]

sweety439 2020-11-26 02:41

Other possible such simple families:

10:10:{0}:49

prime is 2196049

58:58:{0}:1

prime is 212281

10:{0}:49:49

prime is 6046617600000002989

10:{0}:10:49

prime is 466560000649

58:{0}:58:1

prime is 212281

sweety439 2020-11-26 04:18

14:{0}:x:49

[CODE]
1,24253982091278071092686802139899494400000000000000000000000000000000000000000109
2,1009
3,1069
4,1129
5,3024349
6,1249
8,50929
9,1429
10,1489
11,1549
12,1609
13,1669
15,1789
16,5361922889755312850308759177923802244504459923744908273254400000000000000000000000000000000000000000000000000000000000000000000001009
17,3025069
18,3025129
19,2029
20,2089
22,51769
23,2269
24,10886401489
25,2389
26,52009
27,52069
29,52189
30,2689
31,2749
32,52369
33,181442029
34,52489
36,3049
37,3109
38,3169
39,3229
40,39191040002449
41,3026509
43,3469
44,3529
45,53149
46,181442809
47,3709
48,3769
50,3889
51,181443109
52,53569
53,53629
54,4129
55,(trivial factor of 59)
57,3027469
58,307117308965289984000000000000000003529
59,10886403589
[/CODE]

21:{0}:x:49

[CODE]
1,75709
2,1429
3,1489
4,1549
5,1609
6,1669
8,1789
9,211631616000000589
10,76249
11,272160709
12,2029
13,2089
15,16329600949
16,2269
17,4537069
18,2389
19,4537189
20,272161249
22,12697896960000001369
23,2689
24,2749
25,2753361057228796079119709444688918393883353351941059461389077445343240031237662127438976850813717433212648483052318436843042263067280107067121663921269045680514764091347878987046902409665972186282803753885626203381672952078169757610858708358660096000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001549
26,3527193600001609
27,77269
29,3049
30,3109
31,3169
32,3229
33,272162029
34,77689
36,3469
37,3529
38,77929
39,16329602389
40,3709
41,3769
43,3889
44,272162689
45,4538749
46,278553138848124030953717760000000000000000000000000002809
47,4129
48,(trivial factor of 59)
50,78649
51,12697896960000003109
52,4539169
53,979776003229
54,4549
55,58786560003349
57,4729
58,4789
59,592433080565760000000000003589
[/CODE]

28:{0}:x:49

[CODE]
1,1789
2,789910774087680000000000000169
3,21772800229
4,101089
5,2029
6,2089
8,21772800529
9,2269
10,101449
11,2389
12,6048769
13,6048829
15,101749
16,2689
17,2749
18,101929
19,47394646445260800000000000001189
20,362881249
22,3049
23,3109
24,3169
25,3229
26,102409
27,78382080001669
29,3469
30,3529
31,80223303988259720914670714880000000000000000000000000000001909
32,102769
33,3709
34,3769
36,3889
37,103069
38,282175488000002329
39,6050389
40,4129
41,(trivial factor of 59)
43,1306368002629
44,2316350688374295151333383964863082569625926687057800374045900800000000000000000000000000000000000000000000000000000000000000000000000002689
45,103549
46,362882809
47,4549
48,21772802929
50,4729
51,4789
52,103969
53,4909
54,4969
55,104149
57,1039694019687845983054132464844800000000000000000000000000000000003469
58,5209
59,78382080003589
[/CODE]

35:{0}:x:49

[CODE]
1,7560109
2,2269
3,126229
4,2389
5,126349
6,16456474460160000000000000409
8,453600529
9,2689
10,2749
11,5878656000000709
12,76187381760000000000769
13,97977600000829
15,3049
16,3109
17,3169
18,3229
19,127189
20,127249
22,3469
23,3529
24,27855313884812403095371776000000000000000000000000000001489
25,127549
26,3709
27,3769
29,3889
30,127849
31,7561909
32,7561969
33,4129
34,(trivial factor of 59)
36,453602209
37,1632960002269
38,7562329
39,128389
40,4549
41,128509
43,4729
44,4789
45,128749
46,4909
47,4969
48,352719360000002929
50,129049
51,5209
52,129169
53,129229
54,129289
55,5449
57,5569
58,129529
59,5689
[/CODE]

42:{0}:x:49

[CODE]
1,9072109
2,2689
3,2749
4,32659200289
5,151549
6,151609
8,3049
9,3109
10,3169
11,3229
12,151969
13,152029
15,3469
16,3529
17,117573120001069
18,5614347706314368308492315310161920000000000000000000000000000000000001129
19,3709
20,3769
22,3889
23,152629
24,9073489
25,16850366041100048016273224228350264013299690448515611349014072815152914037687200443877077133470937907200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001549
26,4129
27,(trivial factor of 59)
29,152989
30,5485491486720000000001849
31,32659201909
32,544321969
33,4549
34,9074089
36,4729
37,4789
38,153529
39,4909
40,4969
41,117573120002509
43,20686430901833768712610953618533187671699305261361528832000000000000000000000000000000000000000000000000000000000000000002629
44,5209
45,153949
46,544322809
47,544322869
48,5449
50,5569
51,387215843042271258003015621585831529981559389785592810438298620409934449687415027238102244809934838667668586191368584982641890866197562403890778944989683725107200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003109
52,5689
53,5749
54,32659203289
55,5869
57,154669
58,1959552003529
59,154789
[/CODE]

49:{0}:x:49

[CODE]
1,3049
2,3109
3,3169
4,3229
5,3379480093071544116029035238523182050306352376786936240751182230865067894959768623789993478122963368981956666059054838206787747840000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000349
6,176809
8,3469
9,3529
10,10584649
11,177109
12,3709
13,3769
15,3889
16,177409
17,137168640001069
18,140390781979454511600673751040000000000000000000000000000001129
19,4129
20,(trivial factor of 59)
22,635041369
23,38102401429
24,177889
25,177949
26,4549
27,178069
29,4729
30,4789
31,10585909
32,4909
33,4969
34,178489
36,178609
37,5209
38,635042329
39,1382343854653440000000000002389
40,10586449
41,5449
43,5569
44,179089
45,5689
46,5749
47,179269
48,5869
50,137168640003049
51,29628426240000003109
52,106662334464000000003169
53,635043229
54,6229
55,179749
57,10587469
58,6469
59,6529
[/CODE]

sweety439 2020-11-26 04:25

[URL="https://raw.githubusercontent.com/xayahrainie4793/primes/master/kernel60.txt"]minimal primes in base 60 up to 2^32[/URL]

sweety439 2020-11-26 04:36

[QUOTE=sweety439;564438]14:{0}:x:49

[CODE]
1,24253982091278071092686802139899494400000000000000000000000000000000000000000109
2,1009
3,1069
4,1129
5,3024349
6,1249
8,50929
9,1429
10,1489
11,1549
12,1609
13,1669
15,1789
16,5361922889755312850308759177923802244504459923744908273254400000000000000000000000000000000000000000000000000000000000000000000001009
17,3025069
18,3025129
19,2029
20,2089
22,51769
23,2269
24,10886401489
25,2389
26,52009
27,52069
29,52189
30,2689
31,2749
32,52369
33,181442029
34,52489
36,3049
37,3109
38,3169
39,3229
40,39191040002449
41,3026509
43,3469
44,3529
45,53149
46,181442809
47,3709
48,3769
50,3889
51,181443109
52,53569
53,53629
54,4129
55,(trivial factor of 59)
57,3027469
58,307117308965289984000000000000000003529
59,10886403589
[/CODE]

21:{0}:x:49

[CODE]
1,75709
2,1429
3,1489
4,1549
5,1609
6,1669
8,1789
9,211631616000000589
10,76249
11,272160709
12,2029
13,2089
15,16329600949
16,2269
17,4537069
18,2389
19,4537189
20,272161249
22,12697896960000001369
23,2689
24,2749
25,2753361057228796079119709444688918393883353351941059461389077445343240031237662127438976850813717433212648483052318436843042263067280107067121663921269045680514764091347878987046902409665972186282803753885626203381672952078169757610858708358660096000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001549
26,3527193600001609
27,77269
29,3049
30,3109
31,3169
32,3229
33,272162029
34,77689
36,3469
37,3529
38,77929
39,16329602389
40,3709
41,3769
43,3889
44,272162689
45,4538749
46,278553138848124030953717760000000000000000000000000002809
47,4129
48,(trivial factor of 59)
50,78649
51,12697896960000003109
52,4539169
53,979776003229
54,4549
55,58786560003349
57,4729
58,4789
59,592433080565760000000000003589
[/CODE]

28:{0}:x:49

[CODE]
1,1789
2,789910774087680000000000000169
3,21772800229
4,101089
5,2029
6,2089
8,21772800529
9,2269
10,101449
11,2389
12,6048769
13,6048829
15,101749
16,2689
17,2749
18,101929
19,47394646445260800000000000001189
20,362881249
22,3049
23,3109
24,3169
25,3229
26,102409
27,78382080001669
29,3469
30,3529
31,80223303988259720914670714880000000000000000000000000000001909
32,102769
33,3709
34,3769
36,3889
37,103069
38,282175488000002329
39,6050389
40,4129
41,(trivial factor of 59)
43,1306368002629
44,2316350688374295151333383964863082569625926687057800374045900800000000000000000000000000000000000000000000000000000000000000000000000002689
45,103549
46,362882809
47,4549
48,21772802929
50,4729
51,4789
52,103969
53,4909
54,4969
55,104149
57,1039694019687845983054132464844800000000000000000000000000000000003469
58,5209
59,78382080003589
[/CODE]

35:{0}:x:49

[CODE]
1,7560109
2,2269
3,126229
4,2389
5,126349
6,16456474460160000000000000409
8,453600529
9,2689
10,2749
11,5878656000000709
12,76187381760000000000769
13,97977600000829
15,3049
16,3109
17,3169
18,3229
19,127189
20,127249
22,3469
23,3529
24,27855313884812403095371776000000000000000000000000000001489
25,127549
26,3709
27,3769
29,3889
30,127849
31,7561909
32,7561969
33,4129
34,(trivial factor of 59)
36,453602209
37,1632960002269
38,7562329
39,128389
40,4549
41,128509
43,4729
44,4789
45,128749
46,4909
47,4969
48,352719360000002929
50,129049
51,5209
52,129169
53,129229
54,129289
55,5449
57,5569
58,129529
59,5689
[/CODE]

42:{0}:x:49

[CODE]
1,9072109
2,2689
3,2749
4,32659200289
5,151549
6,151609
8,3049
9,3109
10,3169
11,3229
12,151969
13,152029
15,3469
16,3529
17,117573120001069
18,5614347706314368308492315310161920000000000000000000000000000000000001129
19,3709
20,3769
22,3889
23,152629
24,9073489
25,16850366041100048016273224228350264013299690448515611349014072815152914037687200443877077133470937907200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001549
26,4129
27,(trivial factor of 59)
29,152989
30,5485491486720000000001849
31,32659201909
32,544321969
33,4549
34,9074089
36,4729
37,4789
38,153529
39,4909
40,4969
41,117573120002509
43,20686430901833768712610953618533187671699305261361528832000000000000000000000000000000000000000000000000000000000000000002629
44,5209
45,153949
46,544322809
47,544322869
48,5449
50,5569
51,387215843042271258003015621585831529981559389785592810438298620409934449687415027238102244809934838667668586191368584982641890866197562403890778944989683725107200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003109
52,5689
53,5749
54,32659203289
55,5869
57,154669
58,1959552003529
59,154789
[/CODE]

49:{0}:x:49

[CODE]
1,3049
2,3109
3,3169
4,3229
5,3379480093071544116029035238523182050306352376786936240751182230865067894959768623789993478122963368981956666059054838206787747840000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000349
6,176809
8,3469
9,3529
10,10584649
11,177109
12,3709
13,3769
15,3889
16,177409
17,137168640001069
18,140390781979454511600673751040000000000000000000000000000001129
19,4129
20,(trivial factor of 59)
22,635041369
23,38102401429
24,177889
25,177949
26,4549
27,178069
29,4729
30,4789
31,10585909
32,4909
33,4969
34,178489
36,178609
37,5209
38,635042329
39,1382343854653440000000000002389
40,10586449
41,5449
43,5569
44,179089
45,5689
46,5749
47,179269
48,5869
50,137168640003049
51,29628426240000003109
52,106662334464000000003169
53,635043229
54,6229
55,179749
57,10587469
58,6469
59,6529
[/CODE][/QUOTE]

Other possible such simple families: (since x:0:(69-x):49 has trivial factor of 59)

x:{0}:(69-x):(69-x):49

[CODE]
14,3225349
21,176989
28,47394646445260800000000000150109
35,250489
42,32659298869
49,402236156424545502745212987027034204727486491193140838400000000000000000000000000000000000000000000000000000000000000073249
[/CODE]

sweety439 2020-11-26 04:41

There are still these families:

* x:{0}:(69-x):y:49 (both x and y are divisible by 7)
* x:{0}:y:(69-x):49 (both x and y are divisible by 7)
* 46:46:{42}:49
* x:46:{42}:49 (x is divisible by 7)
* 46:x:{42}:49 (x is divisible by 7)

sweety439 2020-11-26 16:20

3 Attachment(s)
Update the sieve files for the "minimal primes problem" in base 36

sweety439 2020-11-28 18:59

[QUOTE=sweety439;564441]There are still these families:

* x:{0}:(69-x):y:49 (both x and y are divisible by 7)
* x:{0}:y:(69-x):49 (both x and y are divisible by 7)
* 46:46:{42}:49
* x:46:{42}:49 (x is divisible by 7)
* 46:x:{42}:49 (x is divisible by 7)[/QUOTE]

Simple family 46:46:{42}:49 has prime 168409

For the family x:46:{42}:49 (x is divisible by 7):

[CODE]
14,3192169
21,47407121744705084745769
28,17401277249084745769
35,100156988745769
42,9240169
49,179209
[/CODE]

For the family 46:x:{42}:49 (x is divisible by 7):

[CODE]
14,599337769
21,166909
28,167329
35,10064569
42,(trivial factor of 53, same as 46:{42}:49
49,7865395004745769
[/CODE]

sweety439 2020-11-29 08:18

[QUOTE=sweety439;564440]Other possible such simple families: (since x:0:(69-x):49 has trivial factor of 59)

x:{0}:(69-x):(69-x):49

[CODE]
14,3225349
21,176989
28,47394646445260800000000000150109
35,250489
42,32659298869
49,402236156424545502745212987027034204727486491193140838400000000000000000000000000000000000000000000000000000000000000073249
[/CODE][/QUOTE]

The corresponding number should contain x:{0}:(69-x):(69-x):49, thus the exponent n of x*60^n+(69-x)*3600+(69-x)*60+49 must be >=3

thus the numbers should be:

[CODE]
14,3225349
21,34864577508285536715621843874728423450542982178891555528152012131493522929364204109502946145026849325046917080053260518080831302972748957603118253490089245371424805240428862727380360124313862377115462690866801581738795217778114560000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000175729
28,47394646445260800000000000150109
35,7684489
42,32659298869
49,402236156424545502745212987027034204727486491193140838400000000000000000000000000000000000000000000000000000000000000073249
[/CODE]

sweety439 2020-11-29 08:33

[QUOTE=sweety439;564430]x:{14}:49

[CODE]
1,109
2,8089
3,229
4,15289
5,349
6,409
8,1779289
9,33289
10,132675289
11,709
12,769
13,829
15,20055578263423416146440677966101694915289
16,1009
17,1069
18,1129
19,249315289
20,1249
22,1037502915289
23,1429
24,1489
25,1549
26,1609
27,1669
29,1789
30,6531289
31,6747289
32,116089
33,2029
34,2089
36,130489
37,2269
38,495555289
39,2389
40,144889
41,103182884390444449640082580739273165590541602171762902235022709553359196234458364272060077833460415740804281702234241751684562368942580406237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915289
43,155689
44,2689
45,2749
46,465965333694915289
47,10203289
48,37509315289
50,3049
51,3109
52,3169
53,3229
54,702915289
55,11931289
57,3469
58,3529
59,213289
[/CODE]

x:{21}:49

[CODE]
1,109
2,508909
3,229
4,56452909
5,349
6,409
8,30109
9,94286240542372909
10,37309
11,709
12,769
13,829
15,42986782372909
16,1009
17,1069
18,1129
19,69709
20,1249
22,4025817357839737065999049857469767607759032979106716427631968228584180718644067796610169491525423728813559322033898305084745762711864406779661016949152542372909
23,1429
24,1489
25,1549
26,1609
27,1669
29,1789
30,66078257013152542372909
31,112909
32,6988909
33,2029
34,2089
36,101773342372909
37,2269
38,497092909
39,2389
40,31380772909
41,535972909
43,156109
44,2689
45,2749
46,166909
47,170509
48,10444909
50,3049
51,3109
52,3169
53,3229
54,195709
55,717412909
57,3469
58,3529
59,12820909
[/CODE]

x:{28}:49

[CODE]
1,109
2,8929
3,229
4,57990529
5,349
6,409
8,30529
9,34129
10,2262529
11,709
12,769
13,829
15,3342529
16,1009
17,1069
18,1129
19,4206529
20,1249
22,80929
23,1429
24,1489
25,1549
26,1609
27,1669
29,1789
30,394950529
31,113329
32,116929
33,2029
34,2089
36,472710529
37,2269
38,8310529
39,2389
40,8742529
41,4212156168942609355932203389830529
43,9390529
44,2689
45,2749
46,167329
47,1041447436333870756881355932203389830529
48,13781461655186262022942372881355932203389830529
50,3049
51,3109
52,3169
53,3229
54,331946136337921041355932203389830529
55,199729
57,3469
58,3529
59,214129
[/CODE]

x:{35}:49

[CODE]
1,109
2,9349
3,229
4,771484637288149
5,349
6,409
8,30949
9,34549
10,38149
11,709
12,769
13,829
15,56149
16,1009
17,1069
18,1129
19,70549
20,1249
22,81349
23,1429
24,1489
25,1549
26,1609
27,1669
29,1789
30,6608149
31,113749
32,25344488149
33,2029
34,2089
36,131749
37,2269
38,23335844534237288149
39,2389
40,526088149
41,149749
43,33898088149
44,2689
45,2749
46,10064149
47,185120325561205169675135454687984165581220276782105983361193164168670838265752820260904448577571678108045870876576322502449572547744055070802594515527926156691477915758601548938853501303980626387044701079429027352148995318212751455646534728345092572787387347410490834215458172781888350653835992601161966471095319325576754886993561238893441826145675686736477047030489460058140333352185261905102459753937730302319495540099005728377120233422356413887591971257315898743429492383226804915072909057608763313496683212160248130680520291356694770983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288149
48,10496149
50,3049
51,3109
52,3169
53,3229
54,196549
55,12008149
57,3469
58,3529
59,12872149
[/CODE]

x:{42}:49

[CODE]
1,109
2,9769
3,229
4,170945053505084745769
5,349
6,409
8,1881769
9,2097769
10,38569
11,709
12,769
13,829
15,56569
16,1009
17,1069
18,1129
19,70969
20,1249
22,81769
23,1429
24,1489
25,1549
26,1609
27,1669
29,1789
30,110569
31,6849769
32,7065769
33,2029
34,2089
36,132169
37,2269
38,139369
39,2389
40,31657545769
41,150169
43,33990345769
44,2689
45,2749
46,(trivial factor of 53)
47,10305769
48,1767252099905084745769
50,3049
51,3109
52,3169
53,3229
54,11817769
55,200569
57,3469
58,3529
59,12897769
[/CODE]

{14}:x:49

[CODE]
1,3074509
2,31719478566747843550804041300349830508474576271186440677966101694914569
3,11070914629
4,11070914689
5,184514749
6,11070914809
8,50929
9,50989
10,3075049
11,51109
12,51169
13,51229
15,51349
16,3075409
17,8608743701694915469
18,516524622101694915529
19,11070915589
20,184515649
22,51769
23,51829
24,664254915889
25,51949
26,52009
27,52069
29,52189
30,52249
31,39855294916309
32,52369
33,3076429
34,52489
36,52609
37,664254916669
38,30991477326101694916729
39,3076789
40,11070916849
41,664254916909
43,184517029
44,53089
45,53149
46,53690481146394350663097813232332427347712798372881355932203389830508474576271186440677966101694917209
47,53269
48,664254917329
50,86756301967596040677966101694917449
51,11070917509
52,53569
53,53629
54,3077689
55,3147493094329085095522234576271186440677966101694917749
57,30991477326101694917869
58,184517929
59,39855294917989
[/CODE]

{21}:x:49

[CODE]
1,75709
2,10041238653656949152542371769
3,4611829
4,276771889
5,16606371949
6,4612009
8,76129
9,616626663337578078627630562878800705084745762711864406779661016949152542372189
10,76249
11,645936492161087054050399981653446997706215532953486454915466633416169490161247457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372309
12,76369
13,996382372429
15,4612549
16,4612609
17,4612669
18,276772729
19,4612789
20,4612849
22,4612969
23,77029
24,276773089
25,16606373149
26,4613209
27,77269
29,276773389
30,4613449
31,77509
32,77569
33,4613629
34,77689
36,16606373809
37,276773869
38,77929
39,16606373989
40,78049
41,4614109
43,78229
44,59782942374289
45,4614349
46,6071553036900241310806779661016949152542374409
47,276774469
48,61187265753757414256952240162711864406779661016949152542374529
50,78649
51,774786933152542374709
52,996382374769
53,4614829
54,78889
55,52209837304507200077039765027430616624964848906126524755206192493399488812789496523127382219681677062442951316647311186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542374949
57,4615069
58,996382375129
59,276775189
[/CODE]

{28}:x:49

[CODE]
1,81583021005009885675936320216949152542372881355932203389828909
2,85460868854823834608016221386772928746969615932515587546395079909292691525423728813559322033898305084745762711864406779661016949152542372881355932203389828969
3,22141829029
4,101089
5,101149
6,101209
8,6149329
9,6149389
10,101449
11,286958123389829509
12,10410756236111524881355932203389829569
13,369029629
15,101749
16,79710589829809
17,101869
18,101929
19,1328509829989
20,6150049
22,13388318204875932203389830169
23,102229
24,6150289
25,79710589830349
26,102409
27,1328509830469
29,6150589
30,6150649
31,29828045081330194812832118462406904082062665762711864406779661016949152542372881355932203389830709
32,102769
33,102829
34,286958123389830889
36,41126317117261134141412615065804034201951786857394034478949601447152874939439946846072866224064662010793220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389831009
37,103069
38,6151129
39,1328509831189
40,369031249
41,369031309
43,286958123389831429
44,1328509831489
45,103549
46,1033049244203389831609
47,103669
48,6151729
50,1328509831849
51,286958123389831909
52,103969
53,37478722450001489572881355932203389832029
54,104089
55,104149
57,6152269
58,1328509832329
59,6152389
[/CODE]

{35}:x:49

[CODE]
1,81475573154959817379255597463815552667176545024717505666213665960638224320021112459781503325113716943629003292963749951159320447728997238620350548107901686289125472897903137985503182233361374542375162900682265823294796999737443473337843435573308433456959404707058320810457306411455933006101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237286109
2,1660637286169
3,126229
4,17128518426043835517434182302188908474576271186440677966101694915254237286289
5,126349
6,36429318221401447864840677966101694915254237286409
8,77478693315254237286529
9,7686589
10,7686649
11,27677286709
12,99638237286769
13,461286829
15,126949
16,1660637287009
17,461287069
18,1660637287129
19,127189
20,127249
22,607155303690024131080677966101694915254237287369
23,131145545597045212313426440677966101694915254237287429
24,36429318221401447864840677966101694915254237287489
25,127549
26,127609
27,127669
29,27677287789
30,127849
31,358697654237287909
32,461287969
33,21521859254237288029
34,99638237288089
36,7688209
37,1660637288269
38,1660637288329
39,128389
40,128449
41,128509
43,128629
44,461288689
45,128749
46,7688809
47,358697654237288869
48,7688929
50,129049
51,7689109
52,129169
53,129229
54,129289
55,21521859254237289349
57,129469
58,129529
59,129589
[/CODE]

{42}:x:49

[CODE]
1,9223309
2,293439587902707111288657562346647653394212382542384936694711075914089081641468094666645578615570550709924319586579296659981779875032195661701462202096102293874185480241052744144833349365537276799785969205297493379562404092952314178395004440542139367761173708310416661107311234222306240316209631923293822273260390016005704126405409242393725556515881932954120677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084743369
3,151429
4,260268905902788122033898305084743489
5,151549
6,151609
8,151729
9,95158435700243530652412123901049491525423728813559322033898305084743789
10,151849
11,151909
12,151969
13,152029
15,334707955121898305084744149
16,33212744209
17,9224269
18,25826231105084744329
19,152389
20,33212744449
22,1992764744569
23,152629
24,9224689
25,33212744749
26,152809
27,553544869
29,152989
30,1085381915311180600372601407525931962389847751970245597672814187895728453642389622010356871067432479240127281624918875843807895776453427504154910355073723811485480200485147288814532682450893550065346880581428503092670144866199408686377359578222051485037152838513072612496791202198960786455011981346714830632452284175840153078825137962409229301085120863398324900668527102405288924544210878811218940250587703349451751315140419049505572840115309385837985597640170169004994591035237463955094223324926699100962730596525138946332290428960176322975631221744617520009977331177155716098492037390962017969334604994823460496054237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745049
31,3452320032561365140374087785000799083572067796610169491525423728813559322033898305084745109
32,33212745169
33,1992764745229
34,9225289
36,153409
37,153469
38,153529
39,153589
40,153649
41,9225709
43,202385101230008043693559322033898305084745829
44,153889
45,153949
46,430437185084746009
47,9226069
48,1992764746129
50,553546249
51,33212746309
52,154369
53,1204948638438833898305084746429
54,95158435700243530652412123901049491525423728813559322033898305084746489
55,9226549
57,154669
58,33212746729
59,154789
[/CODE][/QUOTE]

x:{56}:49

[CODE]
1,109
2,232903489510723542345762711864406779661009
3,229
4,64141009
5,349
6,409
8,6958861009
9,35809
10,39409
11,709
12,769
13,829
15,2678845179661009
16,1009
17,1069
18,1129
19,71809
20,1249
22,82609
23,1429
24,1489
25,1549
26,1609
27,1669
29,1789
30,111409
31,24843661009
32,25621261009
33,2029
34,2089
36,6206038779661009
37,2269
38,2505535405903813370724804403593323757937224648962120170600421596767457627118644067796610169491525423728813559322033898305084745762711864406779661009
39,2389
40,147409
41,151009
43,158209
44,2689
45,2749
46,169009
47,1352698292914071864406779661009
48,3005939172097353755247425084745762711864406779661009
50,3049
51,3109
52,3169
53,3229
54,712141009
55,265108420301689108028745762711864406779661009
57,3469
58,3529
59,36248960086779661009
[/CODE]

{56}:x:49

[CODE]
1,201709
2,201769
3,201829
4,201889
5,(unknown)--------------------------------------------
6,12118009
8,202129
9,9653019592485633973013465317098305084745762711864406779661016989
10,2620643796649
11,202309
12,566400676881355969
13,5709735191002302915254237288135629
15,202549
16,58945898613104908796787281723327929495504791864406779661016949152542372881355932203389830508474609
17,567254718915254269
18,202729
19,12165589
20,12169249
22,568108760949152569
23,12180229
24,2046421359945762711889
25,2047036270210169491549
26,203209
27,7093761567185965006603828947492636122315332510451660944126786645957854271249499254305367632322963084970458439570233744677754294570009344165309519479915483916060404477260724290563504102526168108734063115285915290869621533585153192590815828858408818278898724882400084482921884840835304669997229790232023533140916445257577809774331239487911472434979629754359717806594801121257152551530794852095579580308470842508145255117645170320709345089612366101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050869
29,122969754676067796610189
30,203449
31,1188311170943907960149478894148859142785502131611931784122256194336006619664718924985760162565866809427612081912641567081289109267479099879367407659887603855337724488646981970874823867396949529636127713094173227389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169509
32,203569
33,2638831728829
34,12220489
36,203809
37,203869
38,443886502387850847457627129
39,203989
40,12530020127900548285031371932203389830508474576271186449
41,12533767143489035291097469830508474576271186440677966109
43,44112325429
44,(unknown)--------------------------------------------
45,9533955905084749
46,12264409
47,445081887941857627118644069
48,2159152280280878917332772737414035022878368881841808054237288135593220338983050847457627118644067796610169491525423729
50,2652274983049
51,2063023937084745762709
52,44230942369
53,9781221482636363793361365248867796610169491525423728813559322029
54,44257301689
55,12297349
57,205069
58,205129
59,12311989
[/CODE]

sweety439 2020-11-29 08:45

[QUOTE=sweety439;564438]14:{0}:x:49

[CODE]
1,24253982091278071092686802139899494400000000000000000000000000000000000000000109
2,1009
3,1069
4,1129
5,3024349
6,1249
8,50929
9,1429
10,1489
11,1549
12,1609
13,1669
15,1789
16,5361922889755312850308759177923802244504459923744908273254400000000000000000000000000000000000000000000000000000000000000000000001009
17,3025069
18,3025129
19,2029
20,2089
22,51769
23,2269
24,10886401489
25,2389
26,52009
27,52069
29,52189
30,2689
31,2749
32,52369
33,181442029
34,52489
36,3049
37,3109
38,3169
39,3229
40,39191040002449
41,3026509
43,3469
44,3529
45,53149
46,181442809
47,3709
48,3769
50,3889
51,181443109
52,53569
53,53629
54,4129
55,(trivial factor of 59)
57,3027469
58,307117308965289984000000000000000003529
59,10886403589
[/CODE]

21:{0}:x:49

[CODE]
1,75709
2,1429
3,1489
4,1549
5,1609
6,1669
8,1789
9,211631616000000589
10,76249
11,272160709
12,2029
13,2089
15,16329600949
16,2269
17,4537069
18,2389
19,4537189
20,272161249
22,12697896960000001369
23,2689
24,2749
25,2753361057228796079119709444688918393883353351941059461389077445343240031237662127438976850813717433212648483052318436843042263067280107067121663921269045680514764091347878987046902409665972186282803753885626203381672952078169757610858708358660096000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001549
26,3527193600001609
27,77269
29,3049
30,3109
31,3169
32,3229
33,272162029
34,77689
36,3469
37,3529
38,77929
39,16329602389
40,3709
41,3769
43,3889
44,272162689
45,4538749
46,278553138848124030953717760000000000000000000000000002809
47,4129
48,(trivial factor of 59)
50,78649
51,12697896960000003109
52,4539169
53,979776003229
54,4549
55,58786560003349
57,4729
58,4789
59,592433080565760000000000003589
[/CODE]

28:{0}:x:49

[CODE]
1,1789
2,789910774087680000000000000169
3,21772800229
4,101089
5,2029
6,2089
8,21772800529
9,2269
10,101449
11,2389
12,6048769
13,6048829
15,101749
16,2689
17,2749
18,101929
19,47394646445260800000000000001189
20,362881249
22,3049
23,3109
24,3169
25,3229
26,102409
27,78382080001669
29,3469
30,3529
31,80223303988259720914670714880000000000000000000000000000001909
32,102769
33,3709
34,3769
36,3889
37,103069
38,282175488000002329
39,6050389
40,4129
41,(trivial factor of 59)
43,1306368002629
44,2316350688374295151333383964863082569625926687057800374045900800000000000000000000000000000000000000000000000000000000000000000000000002689
45,103549
46,362882809
47,4549
48,21772802929
50,4729
51,4789
52,103969
53,4909
54,4969
55,104149
57,1039694019687845983054132464844800000000000000000000000000000000003469
58,5209
59,78382080003589
[/CODE]

35:{0}:x:49

[CODE]
1,7560109
2,2269
3,126229
4,2389
5,126349
6,16456474460160000000000000409
8,453600529
9,2689
10,2749
11,5878656000000709
12,76187381760000000000769
13,97977600000829
15,3049
16,3109
17,3169
18,3229
19,127189
20,127249
22,3469
23,3529
24,27855313884812403095371776000000000000000000000000000001489
25,127549
26,3709
27,3769
29,3889
30,127849
31,7561909
32,7561969
33,4129
34,(trivial factor of 59)
36,453602209
37,1632960002269
38,7562329
39,128389
40,4549
41,128509
43,4729
44,4789
45,128749
46,4909
47,4969
48,352719360000002929
50,129049
51,5209
52,129169
53,129229
54,129289
55,5449
57,5569
58,129529
59,5689
[/CODE]

42:{0}:x:49

[CODE]
1,9072109
2,2689
3,2749
4,32659200289
5,151549
6,151609
8,3049
9,3109
10,3169
11,3229
12,151969
13,152029
15,3469
16,3529
17,117573120001069
18,5614347706314368308492315310161920000000000000000000000000000000000001129
19,3709
20,3769
22,3889
23,152629
24,9073489
25,16850366041100048016273224228350264013299690448515611349014072815152914037687200443877077133470937907200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001549
26,4129
27,(trivial factor of 59)
29,152989
30,5485491486720000000001849
31,32659201909
32,544321969
33,4549
34,9074089
36,4729
37,4789
38,153529
39,4909
40,4969
41,117573120002509
43,20686430901833768712610953618533187671699305261361528832000000000000000000000000000000000000000000000000000000000000000002629
44,5209
45,153949
46,544322809
47,544322869
48,5449
50,5569
51,387215843042271258003015621585831529981559389785592810438298620409934449687415027238102244809934838667668586191368584982641890866197562403890778944989683725107200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003109
52,5689
53,5749
54,32659203289
55,5869
57,154669
58,1959552003529
59,154789
[/CODE]

49:{0}:x:49

[CODE]
1,3049
2,3109
3,3169
4,3229
5,3379480093071544116029035238523182050306352376786936240751182230865067894959768623789993478122963368981956666059054838206787747840000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000349
6,176809
8,3469
9,3529
10,10584649
11,177109
12,3709
13,3769
15,3889
16,177409
17,137168640001069
18,140390781979454511600673751040000000000000000000000000000001129
19,4129
20,(trivial factor of 59)
22,635041369
23,38102401429
24,177889
25,177949
26,4549
27,178069
29,4729
30,4789
31,10585909
32,4909
33,4969
34,178489
36,178609
37,5209
38,635042329
39,1382343854653440000000000002389
40,10586449
41,5449
43,5569
44,179089
45,5689
46,5749
47,179269
48,5869
50,137168640003049
51,29628426240000003109
52,106662334464000000003169
53,635043229
54,6229
55,179749
57,10587469
58,6469
59,6529
[/CODE][/QUOTE]

the exponent n must be >=2

thus the numbers should be:

14:{0}:x:49

[CODE]
1,24253982091278071092686802139899494400000000000000000000000000000000000000000109
2,85310363601469440000000000000000169
3,181440229
4,181440289
5,3024349
6,3024409
8,50929
9,50989
10,3024649
11,51109
12,51169
13,51229
15,51349
16,5361922889755312850308759177923802244504459923744908273254400000000000000000000000000000000000000000000000000000000000000000000001009
17,3025069
18,3025129
19,10886401189
20,39191040001249
22,51769
23,51829
24,10886401489
25,51949
26,52009
27,52069
29,52189
30,52249
31,3025909
32,52369
33,181442029
34,52489
36,52609
37,181442269
38,3026329
39,3026389
40,39191040002449
41,3026509
43,30474952704000000002629
44,53089
45,53149
46,181442809
47,53269
48,3026929
50,8465264640000003049
51,181443109
52,53569
53,53629
54,519847009843922991527066232422400000000000000000000000000000000003289
55,(trivial factor of 59)
57,3027469
58,307117308965289984000000000000000003529
59,10886403589
[/CODE]

21:{0}:x:49

[CODE]
1,75709
2,272160169
3,1658433468412565913600000000000000000000229
4,16329600289
5,82957725632529349183096088094078902389028226882976538255839640308244599894942626191769600000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000349
6,761873817600000000409
8,76129
9,211631616000000589
10,76249
11,272160709
12,76369
13,979776000829
15,16329600949
16,58786560001009
17,4537069
18,272161129
19,4537189
20,272161249
22,12697896960000001369
23,77029
24,16329601489
25,2753361057228796079119709444688918393883353351941059461389077445343240031237662127438976850813717433212648483052318436843042263067280107067121663921269045680514764091347878987046902409665972186282803753885626203381672952078169757610858708358660096000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001549
26,3527193600001609
27,77269
29,1658433468412565913600000000000000000001789
30,2742745743360000000001849
31,77509
32,77569
33,272162029
34,77689
36,3527193600002209
37,12697896960000002269
38,77929
39,16329602389
40,78049
41,4538509
43,78229
44,272162689
45,4538749
46,278553138848124030953717760000000000000000000000000002809
47,2742745743360000000002869
48,(trivial factor of 59)
50,78649
51,12697896960000003109
52,4539169
53,979776003229
54,78889
55,58786560003349
57,16329603469
58,3527193600003529
59,592433080565760000000000003589
[/CODE]

28:{0}:x:49

[CODE]
1,6048109
2,789910774087680000000000000169
3,21772800229
4,101089
5,101149
6,101209
8,21772800529
9,13165179568128000000000000589
10,101449
11,6048709
12,6048769
13,6048829
15,101749
16,21772801009
17,101869
18,101929
19,47394646445260800000000000001189
20,362881249
22,362881369
23,102229
24,6049489
25,21772801549
26,102409
27,78382080001669
29,21772801789
30,1306368001849
31,80223303988259720914670714880000000000000000000000000000001909
32,102769
33,102829
34,6050089
36,362882209
37,103069
38,282175488000002329
39,6050389
40,78382080002449
41,(trivial factor of 59)
43,1306368002629
44,2316350688374295151333383964863082569625926687057800374045900800000000000000000000000000000000000000000000000000000000000000000000000002689
45,103549
46,362882809
47,103669
48,21772802929
50,1306368003049
51,614234617930579968000000000000000003109
52,103969
53,78382080003229
54,104089
55,104149
57,1039694019687845983054132464844800000000000000000000000000000000003469
58,362883529
59,78382080003589
[/CODE]

35:{0}:x:49

[CODE]
1,7560109
2,8295772563252934918309608809407890238902822688297653825583964030824459989494262619176960000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000169
3,126229
4,453600289
5,126349
6,16456474460160000000000000409
8,453600529
9,16456474460160000000000000589
10,1632960000649
11,5878656000000709
12,76187381760000000000769
13,97977600000829
15,126949
16,7561009
17,453601069
18,453601129
19,127189
20,127249
22,21163161600000001369
23,1058618139930670449693711081043149246240742123451547245555903649209833331097600000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001429
24,27855313884812403095371776000000000000000000000000000001489
25,127549
26,127609
27,127669
29,7561789
30,127849
31,7561909
32,7561969
33,464255231413540051589529600000000000000000000000000002029
34,(trivial factor of 59)
36,453602209
37,1632960002269
38,7562329
39,128389
40,128449
41,128509
43,128629
44,5878656000002689
45,128749
46,7562809
47,7562869
48,352719360000002929
50,129049
51,1269789696000000003109
52,129169
53,129229
54,129289
55,1632960003349
57,129469
58,129529
59,129589
[/CODE]

42:{0}:x:49

[CODE]
1,9072109
2,25395793920000000169
3,151429
4,32659200289
5,151549
6,151609
8,151729
9,9072589
10,151849
11,151909
12,151969
13,152029
15,9072949
16,32659201009
17,117573120001069
18,5614347706314368308492315310161920000000000000000000000000000000000001129
19,152389
20,9073249
22,9073369
23,152629
24,9073489
25,16850366041100048016273224228350264013299690448515611349014072815152914037687200443877077133470937907200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001549
26,152809
27,(trivial factor of 59)
29,152989
30,5485491486720000000001849
31,32659201909
32,544321969
33,5485491486720000000002029
34,9074089
36,153409
37,153469
38,153529
39,153589
40,153649
41,117573120002509
43,20686430901833768712610953618533187671699305261361528832000000000000000000000000000000000000000000000000000000000000000002629
44,153889
45,153949
46,544322809
47,544322869
48,9074929
50,9075049
51,387215843042271258003015621585831529981559389785592810438298620409934449687415027238102244809934838667668586191368584982641890866197562403890778944989683725107200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003109
52,154369
53,14772772476559131803121204930915190318100750753041978023597954641499975561510557076017704836828037656902825724306702668559522982093578013910983164901324528981969784421602291230795234581969764786884845389890123210865111407518668131288178601114344226068215563391858075723302927140211618251554048985252761126263361099239362046694128659460701378499098943318291633703276353429221375899179448599101811449547970964749313875828661985567305524048394452992000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003229
54,32659203289
55,25395793920000003349
57,154669
58,1959552003529
59,154789
[/CODE]

49:{0}:x:49

[CODE]
1,176509
2,635040169
3,176629
4,23580260366520346895667724302680064000000000000000000000000000000000000000289
5,3379480093071544116029035238523182050306352376786936240751182230865067894959768623789993478122963368981956666059054838206787747840000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000349
6,176809
8,10584529
9,176989
10,10584649
11,177109
12,8230118400000769
13,8230118400000829
15,635040949
16,177409
17,137168640001069
18,140390781979454511600673751040000000000000000000000000000001129
19,177589
20,(trivial factor of 59)
22,635041369
23,38102401429
24,177889
25,177949
26,493807104000001609
27,178069
29,10585789
30,178249
31,10585909
32,10585969
33,383984404070400000000002029
34,178489
36,178609
37,10586269
38,635042329
39,1382343854653440000000000002389
40,10586449
41,178909
43,179029
44,179089
45,38102402749
46,179209
47,179269
48,38102402929
50,137168640003049
51,29628426240000003109
52,106662334464000000003169
53,635043229
54,179689
55,179749
57,10587469
58,635043529
59,179989
[/CODE]

56:{0}:x:49

[CODE]
1,201709
2,201769
3,201829
4,201889
5,9405849600000349
6,73708154151669596160000000000000000000409
8,202129
9,12096589
10,2031663513600000000649
11,202309
12,1579821548175360000000000000769
13,(trivial factor of 59)
15,202549
16,43545601009
17,12097069
18,202729
19,43545601189
20,15920961296760632770560000000000000000000001249
22,12097369
23,12097429
24,438839318937600000000001489
25,43545601549
26,203209
27,393769398563209972074510068169201449481098556918352173620112148964244949549133907206190467334984828895355316871076009117083636780520923662813598354443998931321515584635671891365271355834108131954442039194796452662249576087338013973280335640663780129596229993141561665027264712661995223080071542562945855136153140271526716432372295748613901305709330327823699068831518910889066496000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001669
29,725761789
30,203449
31,12097909
32,203569
33,725762029
34,156764160002089
36,203809
37,203869
38,725762329
39,203989
40,7485796941752491077989753746882560000000000000000000000000000000000002449
41,43545602509
43,725762629
44,156764160002689
45,7313988648960000000002749
46,12098809
47,43545602869
48,7485796941752491077989753746882560000000000000000000000000000000000002929
50,12099049
51,725763109
52,140121763265938537447937873720739226926078690331074652274769844785983881775031005160249279556824173287142353778948596279311875900939698176000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003169
53,12099229
54,73708154151669596160000000000000000003289
55,12099349
57,205069
58,205129
59,12099589
[/CODE]

sweety439 2020-11-29 09:12

[QUOTE=sweety439;564441]There are still these families:

* x:{0}:(69-x):y:49 (both x and y are divisible by 7)
* x:{0}:y:(69-x):49 (both x and y are divisible by 7)
* 46:46:{42}:49
* x:46:{42}:49 (x is divisible by 7)
* 46:x:{42}:49 (x is divisible by 7)[/QUOTE]

For the families

* x:{0}:(69-x):y:49 (both x and y are divisible by 7)
* x:{0}:y:(69-x):49 (both x and y are divisible by 7)

the formula is x*60^n+(69-x)*3600+y*60+49, and the exponent n must be >=3

[CODE]
14,14,30474952704000000198889
14,21,3223309
14,28,3223729
14,35,39191040200149
14,42,507915878400000200569
14,49,181640989
14,56,181641409
21,14,4709689
21,21,3527193600174109
21,28,16329774529
21,35,4710949
21,42,592433080565760000000000175369
21,49,4711789
21,56,366636387458016977907728122767084862675353600000000000000000000000000000000000000000000000176209
28,14,282175488000148489
28,21,6196909
28,28,282175488000149329
28,35,21772949749
28,42,6198169
28,49,1015831756800000150589
28,56,811595095103989852199754334506901252037658952536546715570377242634958349479237785790235037396561504839643390299093296141925888112898373496415048016409202885079874806616375810473697072981470141047462017636334871127550253811801712618213586079953084484967040245525358051328000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000151009
35,14,27216123289
35,21,27216123709
35,28,5878656000124129
35,35,7684549
35,42,5878656000124969
35,49,7685389
35,56,7685809
42,14,544418089
42,21,544418509
42,28,9170929
42,35,32659299349
42,42,9171769
42,49,7054387200100189
42,56,9172609
49,14,1382343854653440000000000072889
49,21,635113309
49,28,635113729
49,35,10658149
49,42,10658569
49,49,38102474989
49,56,10659409
56,14,12143689
56,21,43545648109
56,28,5687357573431296000000000000048529
56,35,9405849600048949
56,42,121899810816000000049369
56,49,15920961296760632770560000000000000000000049789
56,56,2612736050209
[/CODE]

sweety439 2020-11-29 09:16

[QUOTE=sweety439;564727]For the families

* x:{0}:(69-x):y:49 (both x and y are divisible by 7)
* x:{0}:y:(69-x):49 (both x and y are divisible by 7)

the formula is x*60^n+(69-x)*3600+y*60+49, and the exponent n must be >=3

[CODE]
14,14,30474952704000000198889
14,21,3223309
14,28,3223729
14,35,39191040200149
14,42,507915878400000200569
14,49,181640989
14,56,181641409
21,14,4709689
21,21,3527193600174109
21,28,16329774529
21,35,4710949
21,42,592433080565760000000000175369
21,49,4711789
21,56,366636387458016977907728122767084862675353600000000000000000000000000000000000000000000000176209
28,14,282175488000148489
28,21,6196909
28,28,282175488000149329
28,35,21772949749
28,42,6198169
28,49,1015831756800000150589
28,56,811595095103989852199754334506901252037658952536546715570377242634958349479237785790235037396561504839643390299093296141925888112898373496415048016409202885079874806616375810473697072981470141047462017636334871127550253811801712618213586079953084484967040245525358051328000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000151009
35,14,27216123289
35,21,27216123709
35,28,5878656000124129
35,35,7684549
35,42,5878656000124969
35,49,7685389
35,56,7685809
42,14,544418089
42,21,544418509
42,28,9170929
42,35,32659299349
42,42,9171769
42,49,7054387200100189
42,56,9172609
49,14,1382343854653440000000000072889
49,21,635113309
49,28,635113729
49,35,10658149
49,42,10658569
49,49,38102474989
49,56,10659409
56,14,12143689
56,21,43545648109
56,28,5687357573431296000000000000048529
56,35,9405849600048949
56,42,121899810816000000049369
56,49,15920961296760632770560000000000000000000049789
56,56,2612736050209
[/CODE][/QUOTE]

the family x:{0}:y:(69-x):49

[CODE]
14,14,1828497162240000000053749
14,21,3102949
14,28,87314335528601055933672487703638179840000000000000000000000000000000000000000104149
14,35,23697323222630400000000000129349
14,42,653184154549
14,49,10886579749
14,56,1421839393357824000000000000204949
21,14,4589329
21,21,471497411854445702041831433599646171136000000000000000000000000000000000000000000078529
21,28,272263729
21,35,761873817600000128929
21,42,272314129
21,49,4715329
21,56,979776204529
28,14,47394646445260800000000000052909
28,21,21772878109
28,28,1306368103309
28,35,1015831756800000128509
28,42,6201709
28,49,363058909
28,56,6252109
35,14,7612489
35,21,453677689
35,28,453702889
35,35,453728089
35,42,1034321545091688435630547680926659383584965263068076441600000000000000000000000000000000000000000000000000000000000000000153289
35,49,453778489
35,56,7763689
42,14,9124069
42,21,1535565253221389061599916669552741110897456632189955692192083681474829512272135129453510922525361221690477166314271723033120188802017840969135872571387935377488607242892909787410267763689425664432463903752046585965934041592221392289259925461699783631470003583650680234108357136242629037178594940076711634387530300209453418542748194570067935682926374815357451554271990640558506156240804286643522510255672570190067061858896266865292979492043550504659720216667943567422442954337288192000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000077269
42,28,32659302469
42,35,544447669
42,42,117573120152869
42,49,32659378069
42,56,32659403269
49,14,137168640051649
49,21,3869678092962653798400000000000000000076849
49,28,137168640102049
49,35,10711249
49,42,237634695574640633829083042534221670252544000000000000000000000000000000000000000000000152449
49,49,10761649
49,56,1382343854653440000000000202849
56,14,566535196960657629448499885738460574873117973650423757487464494926592599020095087950406759426690829879145778405826838856593058244296318326568243605199392115332255985874049174289486092523862589770124229194573292876887438699211884282069693077913600000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000051229
56,21,564350976000076429
56,28,2612736101629
56,35,(unknown)
56,42,438839318937600000000152029
56,49,12273229
56,56,43545802429
[/CODE]

sweety439 2020-11-29 09:23

Now, the unsolved families are:

{56}:5:49 (not needed, since 5 is prime)
{56}:44:49 (very low weight but eventually should yield a prime)
56:{0}:35:13:49 (not needed, since 13 is prime)

sweety439 2020-11-29 11:17

[QUOTE=sweety439;564729]Now, the unsolved families are:

{56}:5:49 (not needed, since 5 is prime)
{56}:44:49 (very low weight but eventually should yield a prime)
56:{0}:35:13:49 (not needed, since 13 is prime)[/QUOTE]

No, 44:49 is prime (equals 2689), thus {56}:44:49 also not needed.

sweety439 2020-11-29 11:20

[QUOTE=sweety439;564727]For the families

* x:{0}:(69-x):y:49 (both x and y are divisible by 7)
* x:{0}:y:(69-x):49 (both x and y are divisible by 7)

the formula is x*60^n+(69-x)*3600+y*60+49, and the exponent n must be >=3

[CODE]
14,14,30474952704000000198889
14,21,3223309
14,28,3223729
14,35,39191040200149
14,42,507915878400000200569
14,49,181640989
14,56,181641409
21,14,4709689
21,21,3527193600174109
21,28,16329774529
21,35,4710949
21,42,592433080565760000000000175369
21,49,4711789
21,56,366636387458016977907728122767084862675353600000000000000000000000000000000000000000000000176209
28,14,282175488000148489
28,21,6196909
28,28,282175488000149329
28,35,21772949749
28,42,6198169
28,49,1015831756800000150589
28,56,811595095103989852199754334506901252037658952536546715570377242634958349479237785790235037396561504839643390299093296141925888112898373496415048016409202885079874806616375810473697072981470141047462017636334871127550253811801712618213586079953084484967040245525358051328000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000151009
35,14,27216123289
35,21,27216123709
35,28,5878656000124129
35,35,7684549
35,42,5878656000124969
35,49,7685389
35,56,7685809
42,14,544418089
42,21,544418509
42,28,9170929
42,35,32659299349
42,42,9171769
42,49,7054387200100189
42,56,9172609
49,14,1382343854653440000000000072889
49,21,635113309
49,28,635113729
49,35,10658149
49,42,10658569
49,49,38102474989
49,56,10659409
56,14,12143689
56,21,43545648109
56,28,5687357573431296000000000000048529
56,35,9405849600048949
56,42,121899810816000000049369
56,49,15920961296760632770560000000000000000000049789
56,56,2612736050209
[/CODE][/QUOTE]

Note that x:{0}:(69-x):0:49 and x:{0}:0:(69-x):49 do not need to test, since they have trivial factor of 59

sweety439 2020-11-29 11:35

Thus, we have proved that {40}[SUB]1937[/SUB]:1 is the largest minimal prime in base 60, but.... we should check the number {40}:x:1 and x:{40}:1

{40}:x:1

[CODE]
0,8784001
1,144061
2,527184121
3,527184181
4,144241
5,8784301
6,113872271184361
7,527184421
8,144481
9,144541
10,31631184601
11,527184661
12,33913043196358664526990564042370209820226038068458566486664714249719322033898305084745762711864406779661016949152542372881355932203389830508474576271184721
13,527184781
14,31631184841
15,527184901
16,144961
17,145021
18,113872271185081
19,149880623539480242643915932203389830508474576271185141
20,527185201
21,8785261
22,318769481068474576271185321
23,145381
24,145441
25,145501
26,409940176271185561
27,1147570131846508474576271185621
28,145681
29,31631185741
30,8785801
31,145861
32,5312824684474576271185921
33,8785981
34,192747715457150517803389830508474576271186041
35,68854207910790508474576271186101
36,146161
37,146221
38,527186281
39,113872271186341

41,5312824684474576271186461
42,146521
43,146581
44,8786641
45,146701
46,527186761
47,1897871186821
48,1897871186881
49,146941
50,8787001
51,8787061
52,113872271187121
53,1897871187181
54,88547078074576271187241
55,8787301
56,1288837126602692024758924485248572936113417984425523353957090008979918809550003571313773092508713399484305998216665053288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271187361
57,5312824684474576271187421
58,147481
59,147541
[/CODE]

x:{40}:1

[CODE]
1,61
2,9601
3,181
4,241
5,57220816271186401
6,24001
7,421
8,6906499132699249581031646155932203389830508474576271186401
9,541
10,601
11,661
12,5960989295980474576271186401
13,49201
14,1490693601268614508474576271186401
15,56401
16,216146401
17,1021
18,242066401
19,15301586401
20,1201
21,4682401
22,1321
23,1381
24,88801
25,92401
26,96001
27,1621
28,629107126839310717830508474576271186401
29,1741
30,1801
31,1861
32,5488643471186401
33,7274401
34,7490401
35,99875471186401
36,2161
37,2221
38,2281
39,2341

41,150001
42,2521
43,9434401
44,9650401
45,2131151186401
46,1733242935968721451168935113911972881355932203389830508474576271186401
47,10298401
48,38741143572484853118599390155932203389830508474576271186401
49,3122357147620671464157533543332665566590202619661016949152542372881355932203389830508474576271186401
50,3001
51,3061
52,3121
53,3181
54,11810401
55,3301
56,3361
57,747506401
58,45627986401
59,3541
[/CODE]

sweety439 2020-11-29 11:42

[QUOTE=sweety439;564728]the family x:{0}:y:(69-x):49

[CODE]
14,14,1828497162240000000053749
14,21,3102949
14,28,87314335528601055933672487703638179840000000000000000000000000000000000000000104149
14,35,23697323222630400000000000129349
14,42,653184154549
14,49,10886579749
14,56,1421839393357824000000000000204949
21,14,4589329
21,21,471497411854445702041831433599646171136000000000000000000000000000000000000000000078529
21,28,272263729
21,35,761873817600000128929
21,42,272314129
21,49,4715329
21,56,979776204529
28,14,47394646445260800000000000052909
28,21,21772878109
28,28,1306368103309
28,35,1015831756800000128509
28,42,6201709
28,49,363058909
28,56,6252109
35,14,7612489
35,21,453677689
35,28,453702889
35,35,453728089
35,42,1034321545091688435630547680926659383584965263068076441600000000000000000000000000000000000000000000000000000000000000000153289
35,49,453778489
35,56,7763689
42,14,9124069
42,21,1535565253221389061599916669552741110897456632189955692192083681474829512272135129453510922525361221690477166314271723033120188802017840969135872571387935377488607242892909787410267763689425664432463903752046585965934041592221392289259925461699783631470003583650680234108357136242629037178594940076711634387530300209453418542748194570067935682926374815357451554271990640558506156240804286643522510255672570190067061858896266865292979492043550504659720216667943567422442954337288192000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000077269
42,28,32659302469
42,35,544447669
42,42,117573120152869
42,49,32659378069
42,56,32659403269
49,14,137168640051649
49,21,3869678092962653798400000000000000000076849
49,28,137168640102049
49,35,10711249
49,42,237634695574640633829083042534221670252544000000000000000000000000000000000000000000000152449
49,49,10761649
49,56,1382343854653440000000000202849
56,14,566535196960657629448499885738460574873117973650423757487464494926592599020095087950406759426690829879145778405826838856593058244296318326568243605199392115332255985874049174289486092523862589770124229194573292876887438699211884282069693077913600000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000051229
56,21,564350976000076429
56,28,2612736101629
56,35,(unknown)
56,42,438839318937600000000152029
56,49,12273229
56,56,43545802429
[/CODE][/QUOTE]

1535565253221389061599916669552741110897456632189955692192083681474829512272135129453510922525361221690477166314271723033120188802017840969135872571387935377488607242892909787410267763689425664432463903752046585965934041592221392289259925461699783631470003583650680234108357136242629037178594940076711634387530300209453418542748194570067935682926374815357451554271990640558506156240804286643522510255672570190067061858896266865292979492043550504659720216667943567422442954337288192000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000077269 has 1096 digits but not minimal prime in base 60, since 21:27:49 (=77269) and 27:49 (=1669) are primes

sweety439 2020-11-29 15:11

Base 60 minimal primes with >=500 decimal digits:

[CODE]
{26}_(896):1 = 44237739863175496610471318629567161227581499739702326449443211342477982035718794483071631727522073459377930102398410838554672162663612371413096490082577997717588025268103015103195710515977898833005189244382338257840944719699642630344222584794826781588580542174706455627416628292660455033430459427791568859444909759999806211055982544227289834463933517584500668147475720542564765516991468231198124803963783152542228516984157676464674424474630978346931184024801441861139072461640784439697679231361092862140120023823474610674945003533686787118333313230137931070802812541939817735865901202734962214450795186055471212270838294675126791484852523312122258393734265285929307078713993139831738349121088218059932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271161
{40}_(1937):1 = 77327010984551504786304887888912950705175204580639944878112438600952757035876727229378296619277947037764123978846596061647800547824271405420610942504398032526580100809844305805544927484087907616047490338190828917065699765520511128503381872341167737600460647597875122424469309525340927891025212547061188776538264903805527424912087179786849901547205244266878177942527870184920215328514230990454933261585699343368869812084796558411721869822394527700663131350707635393027944180439815096746293426421194665978764581162587927866393205026213755969137701220074489706959966447530447995143405265533839850435707734313891577375215804642516141551699775657946569122025380740434646135054704170314178518948917457077920299428193780905089153629086443760982953552745554032630063069920652615362123725793144110637743473716888605506966189552881692154417121864981473601912302543600701367807908042289806525645841750281185651872533226665585223241511993986508736773286351668957103552353014040845431533864448327266336789760566326440423377001353690565900244559349252519469001825116007514729851712983574622341296162969774717357252465431566117676922668834197449691552002659958493980197122256612229132710589188220351409094828130859660567041139496963915457844074136483182933611723591111024630476224702575651192615747211666681896793532612116567734947534484938472185678092597966368048609549325442879516453824590523188998379435190788947006444708909975051214459423525690882137592842255587521093881402277645744154135012098764172743649344172229163389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186401
47:{35}_(686):49 = 185120325561205169675135454687984165581220276782105983361193164168670838265752820260904448577571678108045870876576322502449572547744055070802594515527926156691477915758601548938853501303980626387044701079429027352148995318212751455646534728345092572787387347410490834215458172781888350653835992601161966471095319325576754886993561238893441826145675686736477047030489460058140333352185261905102459753937730302319495540099005728377120233422356413887591971257315898743429492383226804915072909057608763313496683212160248130680520291356694770983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288149
{35}_(367):1:49 = 81475573154959817379255597463815552667176545024717505666213665960638224320021112459781503325113716943629003292963749951159320447728997238620350548107901686289125472897903137985503182233361374542375162900682265823294796999737443473337843435573308433456959404707058320810457306411455933006101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237286109
{42}_(455):2:49 = 293439587902707111288657562346647653394212382542384936694711075914089081641468094666645578615570550709924319586579296659981779875032195661701462202096102293874185480241052744144833349365537276799785969205297493379562404092952314178395004440542139367761173708310416661107311234222306240316209631923293822273260390016005704126405409242393725556515881932954120677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084743369
{42}_(786):30:49 = 1085381915311180600372601407525931962389847751970245597672814187895728453642389622010356871067432479240127281624918875843807895776453427504154910355073723811485480200485147288814532682450893550065346880581428503092670144866199408686377359578222051485037152838513072612496791202198960786455011981346714830632452284175840153078825137962409229301085120863398324900668527102405288924544210878811218940250587703349451751315140419049505572840115309385837985597640170169004994591035237463955094223324926699100962730596525138946332290428960176322975631221744617520009977331177155716098492037390962017969334604994823460496054237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745049
{49}_(437):15:49 = 3370877628514757222772400494683673158596409477797247719358711849483581786873706143158543146664730075705489224200224093772041630182187652701699645946277442899767500755812009374102776457086216749247209626019900398116606709317609816539188162397141065837083072359107434141070736000398492419524277805139751989637641458276851772548616402672230694356610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932201349
21:{0}_(313):25:49 = 2753361057228796079119709444688918393883353351941059461389077445343240031237662127438976850813717433212648483052318436843042263067280107067121663921269045680514764091347878987046902409665972186282803753885626203381672952078169757610858708358660096000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001549
21:{0}_(289):48:48:49 = 34864577508285536715621843874728423450542982178891555528152012131493522929364204109502946145026849325046917080053260518080831302972748957603118253490089245371424805240428862727380360124313862377115462690866801581738795217778114560000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000175729
56:{27}_(562):49 = 7093761567185965006603828947492636122315332510451660944126786645957854271249499254305367632322963084970458439570233744677754294570009344165309519479915483916060404477260724290563504102526168108734063115285915290869621533585153192590815828858408818278898724882400084482921884840835304669997229790232023533140916445257577809774331239487911472434979629754359717806594801121257152551530794852095579580308470842508145255117645170320709345089612366101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050869
42:{0}_(568):53:49 = 14772772476559131803121204930915190318100750753041978023597954641499975561510557076017704836828037656902825724306702668559522982093578013910983164901324528981969784421602291230795234581969764786884845389890123210865111407518668131288178601114344226068215563391858075723302927140211618251554048985252761126263361099239362046694128659460701378499098943318291633703276353429221375899179448599101811449547970964749313875828661985567305524048394452992000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003229
56:{0}:(481):27:49 = 393769398563209972074510068169201449481098556918352173620112148964244949549133907206190467334984828895355316871076009117083636780520923662813598354443998931321515584635671891365271355834108131954442039194796452662249576087338013973280335640663780129596229993141561665027264712661995223080071542562945855136153140271526716432372295748613901305709330327823699068831518910889066496000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001669
28:{0}_(342):41:56:49 = 811595095103989852199754334506901252037658952536546715570377242634958349479237785790235037396561504839643390299093296141925888112898373496415048016409202885079874806616375810473697072981470141047462017636334871127550253811801712618213586079953084484967040245525358051328000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000151009
42:{0}_(612):21:27:49 = 1535565253221389061599916669552741110897456632189955692192083681474829512272135129453510922525361221690477166314271723033120188802017840969135872571387935377488607242892909787410267763689425664432463903752046585965934041592221392289259925461699783631470003583650680234108357136242629037178594940076711634387530300209453418542748194570067935682926374815357451554271990640558506156240804286643522510255672570190067061858896266865292979492043550504659720216667943567422442954337288192000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000077269
56:{0}_(308):14:13:49 = 566535196960657629448499885738460574873117973650423757487464494926592599020095087950406759426690829879145778405826838856593058244296318326568243605199392115332255985874049174289486092523862589770124229194573292876887438699211884282069693077913600000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000051229
[/CODE]

sweety439 2020-11-29 19:22

[QUOTE=sweety439;564747]Base 60 minimal primes with >=500 decimal digits:

[CODE]
{26}_(896):1 = 44237739863175496610471318629567161227581499739702326449443211342477982035718794483071631727522073459377930102398410838554672162663612371413096490082577997717588025268103015103195710515977898833005189244382338257840944719699642630344222584794826781588580542174706455627416628292660455033430459427791568859444909759999806211055982544227289834463933517584500668147475720542564765516991468231198124803963783152542228516984157676464674424474630978346931184024801441861139072461640784439697679231361092862140120023823474610674945003533686787118333313230137931070802812541939817735865901202734962214450795186055471212270838294675126791484852523312122258393734265285929307078713993139831738349121088218059932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271161
{40}_(1937):1 = 77327010984551504786304887888912950705175204580639944878112438600952757035876727229378296619277947037764123978846596061647800547824271405420610942504398032526580100809844305805544927484087907616047490338190828917065699765520511128503381872341167737600460647597875122424469309525340927891025212547061188776538264903805527424912087179786849901547205244266878177942527870184920215328514230990454933261585699343368869812084796558411721869822394527700663131350707635393027944180439815096746293426421194665978764581162587927866393205026213755969137701220074489706959966447530447995143405265533839850435707734313891577375215804642516141551699775657946569122025380740434646135054704170314178518948917457077920299428193780905089153629086443760982953552745554032630063069920652615362123725793144110637743473716888605506966189552881692154417121864981473601912302543600701367807908042289806525645841750281185651872533226665585223241511993986508736773286351668957103552353014040845431533864448327266336789760566326440423377001353690565900244559349252519469001825116007514729851712983574622341296162969774717357252465431566117676922668834197449691552002659958493980197122256612229132710589188220351409094828130859660567041139496963915457844074136483182933611723591111024630476224702575651192615747211666681896793532612116567734947534484938472185678092597966368048609549325442879516453824590523188998379435190788947006444708909975051214459423525690882137592842255587521093881402277645744154135012098764172743649344172229163389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186401
47:{35}_(686):49 = 185120325561205169675135454687984165581220276782105983361193164168670838265752820260904448577571678108045870876576322502449572547744055070802594515527926156691477915758601548938853501303980626387044701079429027352148995318212751455646534728345092572787387347410490834215458172781888350653835992601161966471095319325576754886993561238893441826145675686736477047030489460058140333352185261905102459753937730302319495540099005728377120233422356413887591971257315898743429492383226804915072909057608763313496683212160248130680520291356694770983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288149
{35}_(367):1:49 = 81475573154959817379255597463815552667176545024717505666213665960638224320021112459781503325113716943629003292963749951159320447728997238620350548107901686289125472897903137985503182233361374542375162900682265823294796999737443473337843435573308433456959404707058320810457306411455933006101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237286109
{42}_(455):2:49 = 293439587902707111288657562346647653394212382542384936694711075914089081641468094666645578615570550709924319586579296659981779875032195661701462202096102293874185480241052744144833349365537276799785969205297493379562404092952314178395004440542139367761173708310416661107311234222306240316209631923293822273260390016005704126405409242393725556515881932954120677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084743369
{42}_(786):30:49 = 1085381915311180600372601407525931962389847751970245597672814187895728453642389622010356871067432479240127281624918875843807895776453427504154910355073723811485480200485147288814532682450893550065346880581428503092670144866199408686377359578222051485037152838513072612496791202198960786455011981346714830632452284175840153078825137962409229301085120863398324900668527102405288924544210878811218940250587703349451751315140419049505572840115309385837985597640170169004994591035237463955094223324926699100962730596525138946332290428960176322975631221744617520009977331177155716098492037390962017969334604994823460496054237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745049
{49}_(437):15:49 = 3370877628514757222772400494683673158596409477797247719358711849483581786873706143158543146664730075705489224200224093772041630182187652701699645946277442899767500755812009374102776457086216749247209626019900398116606709317609816539188162397141065837083072359107434141070736000398492419524277805139751989637641458276851772548616402672230694356610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932201349
21:{0}_(313):25:49 = 2753361057228796079119709444688918393883353351941059461389077445343240031237662127438976850813717433212648483052318436843042263067280107067121663921269045680514764091347878987046902409665972186282803753885626203381672952078169757610858708358660096000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001549
21:{0}_(289):48:48:49 = 34864577508285536715621843874728423450542982178891555528152012131493522929364204109502946145026849325046917080053260518080831302972748957603118253490089245371424805240428862727380360124313862377115462690866801581738795217778114560000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000175729
56:{27}_(562):49 = 7093761567185965006603828947492636122315332510451660944126786645957854271249499254305367632322963084970458439570233744677754294570009344165309519479915483916060404477260724290563504102526168108734063115285915290869621533585153192590815828858408818278898724882400084482921884840835304669997229790232023533140916445257577809774331239487911472434979629754359717806594801121257152551530794852095579580308470842508145255117645170320709345089612366101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050869
42:{0}_(568):53:49 = 14772772476559131803121204930915190318100750753041978023597954641499975561510557076017704836828037656902825724306702668559522982093578013910983164901324528981969784421602291230795234581969764786884845389890123210865111407518668131288178601114344226068215563391858075723302927140211618251554048985252761126263361099239362046694128659460701378499098943318291633703276353429221375899179448599101811449547970964749313875828661985567305524048394452992000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003229
56:{0}:(481):27:49 = 393769398563209972074510068169201449481098556918352173620112148964244949549133907206190467334984828895355316871076009117083636780520923662813598354443998931321515584635671891365271355834108131954442039194796452662249576087338013973280335640663780129596229993141561665027264712661995223080071542562945855136153140271526716432372295748613901305709330327823699068831518910889066496000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001669
28:{0}_(342):41:56:49 = 811595095103989852199754334506901252037658952536546715570377242634958349479237785790235037396561504839643390299093296141925888112898373496415048016409202885079874806616375810473697072981470141047462017636334871127550253811801712618213586079953084484967040245525358051328000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000151009
42:{0}_(612):21:27:49 = 1535565253221389061599916669552741110897456632189955692192083681474829512272135129453510922525361221690477166314271723033120188802017840969135872571387935377488607242892909787410267763689425664432463903752046585965934041592221392289259925461699783631470003583650680234108357136242629037178594940076711634387530300209453418542748194570067935682926374815357451554271990640558506156240804286643522510255672570190067061858896266865292979492043550504659720216667943567422442954337288192000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000077269
56:{0}_(308):14:13:49 = 566535196960657629448499885738460574873117973650423757487464494926592599020095087950406759426690829879145778405826838856593058244296318326568243605199392115332255985874049174289486092523862589770124229194573292876887438699211884282069693077913600000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000051229
[/CODE][/QUOTE]

The 1st number {26}_(896):1 [B]is minimal prime[/B]
The 2nd number {40}_(1937):1 [B]is minimal prime[/B]
The 3rd number 47:{35}_(686):49 is not minimal prime, since 47 is prime
The 4th number {35}_(367):1:49 is not minimal prime, since 35:35:35:1 (=7688101) and 1:49 (=109) are primes
The 5th number {42}_(455):2:49 is not minimal prime, since 2 is prime
The 6th number {42}_(786):30:49 [B]is minimal prime[/B]
The 7th number {49}_(437):15:49 [B]is minimal prime[/B]
The 8th number 21:{0}_(313):25:49 is not minimal prime, since 25:49 (=1549) is prime
The 9th number 21:{0}_(289):48:48:49 [B]is minimal prime[/B]
The 10th number 56:{27}_(562):49 is not minimal prime, since 27:49 (=1669) is prime
The 11th number 42:{0}_(568):53:49 is not minimal prime, since 53 and 53:49 (=3229) are primes
The 12th number 56:{0}:(481):27:49 is not minimal prime, since 27:49 (=1669) is prime
The 13th number 28:{0}_(342):41:56:49 is not minimal prime, since 41 is prime
The 14th number 42:{0}_(612):21:27:49 is not minimal prime, since 27:49 (=1669) is prime
The 15th number 56:{0}_(308):14:13:49 is not minimal prime, since 13 and 13:49 (=829) are primes

sweety439 2020-11-29 19:26

Thus, the top 5 minimal primes in base 60 are:

[CODE]
{40}_(1937):1 = 77327010984551504786304887888912950705175204580639944878112438600952757035876727229378296619277947037764123978846596061647800547824271405420610942504398032526580100809844305805544927484087907616047490338190828917065699765520511128503381872341167737600460647597875122424469309525340927891025212547061188776538264903805527424912087179786849901547205244266878177942527870184920215328514230990454933261585699343368869812084796558411721869822394527700663131350707635393027944180439815096746293426421194665978764581162587927866393205026213755969137701220074489706959966447530447995143405265533839850435707734313891577375215804642516141551699775657946569122025380740434646135054704170314178518948917457077920299428193780905089153629086443760982953552745554032630063069920652615362123725793144110637743473716888605506966189552881692154417121864981473601912302543600701367807908042289806525645841750281185651872533226665585223241511993986508736773286351668957103552353014040845431533864448327266336789760566326440423377001353690565900244559349252519469001825116007514729851712983574622341296162969774717357252465431566117676922668834197449691552002659958493980197122256612229132710589188220351409094828130859660567041139496963915457844074136483182933611723591111024630476224702575651192615747211666681896793532612116567734947534484938472185678092597966368048609549325442879516453824590523188998379435190788947006444708909975051214459423525690882137592842255587521093881402277645744154135012098764172743649344172229163389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186401
{26}_(896):1 = 44237739863175496610471318629567161227581499739702326449443211342477982035718794483071631727522073459377930102398410838554672162663612371413096490082577997717588025268103015103195710515977898833005189244382338257840944719699642630344222584794826781588580542174706455627416628292660455033430459427791568859444909759999806211055982544227289834463933517584500668147475720542564765516991468231198124803963783152542228516984157676464674424474630978346931184024801441861139072461640784439697679231361092862140120023823474610674945003533686787118333313230137931070802812541939817735865901202734962214450795186055471212270838294675126791484852523312122258393734265285929307078713993139831738349121088218059932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271161
{42}_(786):30:49 = 1085381915311180600372601407525931962389847751970245597672814187895728453642389622010356871067432479240127281624918875843807895776453427504154910355073723811485480200485147288814532682450893550065346880581428503092670144866199408686377359578222051485037152838513072612496791202198960786455011981346714830632452284175840153078825137962409229301085120863398324900668527102405288924544210878811218940250587703349451751315140419049505572840115309385837985597640170169004994591035237463955094223324926699100962730596525138946332290428960176322975631221744617520009977331177155716098492037390962017969334604994823460496054237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745049
{49}_(437):15:49 = 3370877628514757222772400494683673158596409477797247719358711849483581786873706143158543146664730075705489224200224093772041630182187652701699645946277442899767500755812009374102776457086216749247209626019900398116606709317609816539188162397141065837083072359107434141070736000398492419524277805139751989637641458276851772548616402672230694356610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661016949152542372881355932201349
21:{0}_(289):48:48:49 = 34864577508285536715621843874728423450542982178891555528152012131493522929364204109502946145026849325046917080053260518080831302972748957603118253490089245371424805240428862727380360124313862377115462690866801581738795217778114560000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000175729
[/CODE]

They are the only "base 60 minimal primes" > 10^500

sweety439 2020-12-01 18:22

2 Attachment(s)
reserve the only two unsolved families in base 36 (O{L}Z and {P}SZ), started with n=49K (double checked 49K-50K)

sweety439 2020-12-01 18:30

The "minimal prime problem" is solved only in bases 2~16, 18, 20, 22~24, 30, 42, 60

[CODE]
b, length of largest minimal prime base b, number of minimal primes base b
2, 2, 2
3, 3, 3
4, 2, 3
5, 5, 8
6, 5, 7
7, 5, 9
8, 9, 15
9, 4, 12
10, 8, 26
11, 45, 152
12, 8, 17
13, 32021, 228
14, 86, 240
15, 107, 100
16, 3545, 483
18, 33, 50
20, 449, 651
22, 764, 1242
23, 800874, 6021
24, 100, 306
30, 1024, 220
42, 487, 4551
60, 1938, ? (should check all minimal primes)
[/CODE]

Base 13 and 23 data based in the case that one allows probable primes in place of proven primes.

sweety439 2020-12-02 12:34

[QUOTE=sweety439;564952]reserve the only two unsolved families in base 36 (O{L}Z and {P}SZ), started with n=49K (double checked 49K-50K)[/QUOTE]

O{L}Z at 67946 L's
{P}SZ at 65187 P's

both no (probable) prime found

sweety439 2020-12-02 18:47

where A=10, B=11, C=12, ...

and "SUB" tag means repeating digits, e.g. 123[SUB]4[/SUB]567 = 123333567

sweety439 2020-12-02 18:50

[QUOTE=sweety439;564439][URL="https://raw.githubusercontent.com/xayahrainie4793/primes/master/kernel60.txt"]minimal primes in base 60 up to 2^32[/URL][/QUOTE]

The link moves to [URL="https://raw.githubusercontent.com/xayahrainie4793/minimal-primes-and-left-right-truncatable-primes/master/kernel60.txt"]https://raw.githubusercontent.com/xayahrainie4793/minimal-primes-and-left-right-truncatable-primes/master/kernel60.txt[/URL]

sweety439 2020-12-02 18:52

The GitHub link for minimal primes and left truncatable primes and right truncatable primes is now [URL="https://github.com/xayahrainie4793/minimal-primes-and-left-right-truncatable-primes"]https://github.com/xayahrainie4793/minimal-primes-and-left-right-truncatable-primes[/URL]

sweety439 2020-12-02 18:55

[QUOTE=sweety439;565043]O{L}Z at 67946 L's
{P}SZ at 65187 P's

both no (probable) prime found[/QUOTE]

O{L}Z at 68945 Ls
{P}SZ at 66001 Ps

both no (probable) prime found

sweety439 2020-12-04 20:51

[URL="https://scholar.colorado.edu/downloads/hh63sw661"]the old PDF page for bases 2 to 10[/URL]

sweety439 2020-12-04 20:53

[URL="https://cs.uwaterloo.ca/~cbright/talks/minimal-slides.pdf"]the newest PDF page, include the (probable) prime (51*21^479149-1243)/4[/URL]

sweety439 2020-12-13 05:53

[QUOTE=sweety439;564315]In [URL="http://www.noprimeleftbehind.net/crus/Sierp-conjectures.htm"]Sierpinski problem[/URL] base b, the prime for a k-value <b is "minimal prime base b" if and only if k is not prime.

In [URL="http://www.noprimeleftbehind.net/crus/Riesel-conjectures.htm"]Riesel problem[/URL] base b, the prime for a k-value <b is "minimal prime base b" if and only if neither k-1 nor b-1 is prime.

However, if we exclude the single-digit primes from the set (i.e. the minimal string of the set of prime numbers >= b in base b, see problem [URL="https://mersenneforum.org/showthread.php?t=24972"]https://mersenneforum.org/showthread.php?t=24972[/URL]), then the prime for Sierpinski/Riesel problems base b for a k-value <b is always "minimal prime base b", this is why the "minimal prime problem" for the prime numbers >= b in base b is more interesting, since single-digit primes are trivial, like that in Sierpinski/Riesel problems base b, n=0 is trivial, since the corresponding number is just k+1 or k-1, and thus CRUS requires n>=1, and of course the CRUS Sierpinski/Riesel problems (requiring n>=1) is much harder than the same problem which n=0 is allowed, similarly, finding the minimal set of the strings for primes in base b with at least two digits in base b is much harder than finding the minimal set of the strings for primes (including the single-digit primes in base b) in base b, e.g.

* In base 7, the largest minimal prime is 11111, but if single-digit primes are excluded, then a much-larger prime 33333333333333331 is minimal prime.

* In base 8, the largest minimal prime is 444444441, but if single-digit primes are excluded, then a much-larger prime 7777777777771 is minimal prime.

* In base 10, the largest minimal prime is 66600049, but if single-digit primes are excluded, then a much-larger prime 555555555551 is minimal prime.

* In base 14, the largest minimal prime is 40[SUB]83[/SUB]49, but if single-digit primes are excluded, then a much-larger prime 4D[SUB]19698[/SUB] is minimal prime.

* In base 17, there are only 2 unsolved families when searched to length 10000, but if single-digit primes are excluded, then a large prime 74[SUB]4904[/SUB] is minimal prime.

* In base 21, there are only 3 unsolved families when searched to length 10000, but if single-digit primes are excluded, then a large prime 5D0[SUB]19848[/SUB]1 is minimal prime.

* In base 30, the largest minimal prime is C0[SUB]1022[/SUB]1, but if single-digit primes are excluded, then a much-larger prime OT[SUB]34205[/SUB] is minimal prime.

* In base 32, there are 78 unsolved families when searched to length 10000, but if single-digit primes are excluded, then the unsolved family S{V} is searched up to length 2000001 by CRUS with no prime found.

* In base 33, there are 33 unsolved families when searched to length 10000, but if single-digit primes are excluded, then a large prime 130[SUB]23614[/SUB]1 is minimal prime.

* In base 35, there are only 15 unsolved families when searched to length 10000, but if single-digit primes are excluded, then a large prime 1B0[SUB]56061[/SUB]1 is minimal prime.

* In base 37, if single-digit primes are excluded, then the unsolved family 2K{0}1 is searched up to length 1000002 by CRUS with no prime found, also another unsolved family {I}J is searched up to length 524287 with no (probable) prime found.

* In base 38, if single-digit primes are excluded, then there are four large known minimal primes 20[SUB]2728[/SUB]1, V0[SUB]1527[/SUB]1, Lb[SUB]1579[/SUB], and ab[SUB]136211[/SUB].

* In base 42, the largest minimal prime is R[SUB]486[/SUB]1, but if single-digit primes are excluded, then a much-larger prime 2f[SUB]2523[/SUB] is minimal prime.

* In base 43, if single-digit primes are excluded, then the unsolved family 3b{0}1 is searched up to length 1000002 by CRUS with no prime found, also another unsolved family 2{7} is searched up to length 50001 with no (probable) prime found.

* In base 48, if single-digit primes are excluded, then there is a large known minimal prime T0[SUB]133041[/SUB]1.

* In base 60, if single-digit primes are excluded, then the unsolved family Z{x} is searched up to length 100001 by CRUS with no prime found.[/QUOTE]

If even the prime 10 (i.e. the prime equal to the base (b)) is excluded, this is the "minimal prime problem" for the prime numbers > b in base b and contain more primes (for prime base b, if b is not prime, then the "minimal prime problem" for the prime numbers (>=b and >b) are completely the same)

* In base 19, a large prime F10[SUB]18523[/SUB]1 is minimal prime.

* In base 29, a large prime 10[SUB]8095[/SUB]A is minimal prime.

* In base 37, a large prime 1F0[SUB]1627[/SUB]1 is minimal prime.

* In base 47, a large prime 10[SUB]112[/SUB]2 is minimal prime.

* In base 53, a large prime 10[SUB]13401[/SUB]4 is minimal prime.

* In base 53, 19{0}1 is unsolved family searched to length 305002.

* In base 89, a large prime 10[SUB]254[/SUB]2 is minimal prime.

* In base 107, a large prime 1:0[SUB]1399[/SUB]:(106) is minimal prime.

* In base 113, a large prime 10[SUB]10645[/SUB]4 is minimal prime.

* In base 113, a large prime 1:0[SUB]20087[/SUB]:(112) is minimal prime.

* In base 139, 1{0}4 is unsolved family searched to length 25000.

* In base 167, 1{0}2 is unsolved family searched to length 100001.

sweety439 2020-12-18 18:24

There are three problems:

* Find the set of all minimal primes base b when single-digit prime substrings are allowed (see [URL="https://mersenneforum.org/showthread.php?t=24972"]https://mersenneforum.org/showthread.php?t=24972[/URL]), for 2<=b<=256

* Find the set of all left-truncatable primes base b when the single-digit suffix (i.e. the rightmost digit) need not to be prime, for 2<=b<=256

* Find the set of all right-truncatable primes base b when the single-digit prefix (i.e. the leftmost digit) need not to be prime (see [URL="https://codegolf.meta.stackexchange.com/questions/2140/sandbox-for-proposed-challenges/17229#17229"]https://codegolf.meta.stackexchange.com/questions/2140/sandbox-for-proposed-challenges/17229#17229[/URL] and [URL="https://hlma.math.cuhk.edu.hk/wp-content/uploads/2018/06/a90bcf7cf0e95d023687faea1b2408fa.pdf"]https://hlma.math.cuhk.edu.hk/wp-content/uploads/2018/06/a90bcf7cf0e95d023687faea1b2408fa.pdf[/URL]), for 2<=b<=256

Compare with the original problems ....

* Find the set of all minimal primes base b, for 2<=b<=256

* Find the set of all left-truncatable primes base b, for 2<=b<=256

* Find the set of all right-truncatable primes base b, for 2<=b<=256

sweety439 2020-12-18 18:47

[QUOTE=sweety439;566583]There are three problems:

* Find the set of all minimal primes base b when single-digit prime substrings are allowed (see [URL="https://mersenneforum.org/showthread.php?t=24972"]https://mersenneforum.org/showthread.php?t=24972[/URL]), for 2<=b<=256

* Find the set of all left-truncatable primes base b when the single-digit suffix (i.e. the rightmost digit) need not to be prime, for 2<=b<=256

* Find the set of all right-truncatable primes base b when the single-digit prefix (i.e. the leftmost digit) need not to be prime (see [URL="https://codegolf.meta.stackexchange.com/questions/2140/sandbox-for-proposed-challenges/17229#17229"]https://codegolf.meta.stackexchange.com/questions/2140/sandbox-for-proposed-challenges/17229#17229[/URL] and [URL="https://hlma.math.cuhk.edu.hk/wp-content/uploads/2018/06/a90bcf7cf0e95d023687faea1b2408fa.pdf"]https://hlma.math.cuhk.edu.hk/wp-content/uploads/2018/06/a90bcf7cf0e95d023687faea1b2408fa.pdf[/URL]), for 2<=b<=256

Compare with the original problems ....

* Find the set of all minimal primes base b, for 2<=b<=256

* Find the set of all left-truncatable primes base b, for 2<=b<=256

* Find the set of all right-truncatable primes base b, for 2<=b<=256[/QUOTE]

(single-digit primes are not in these sets)

The 1st set for b=10 is {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501, 9001, 9049, 9221, 9551, 9649, 9851, 9949, 20021, 20201, 50207, 60649, 80051, 666649, 946669, 5200007, 22000001, 60000049, 66000049, 66600049, 80555551, ...}

The 2nd set for b=10 is {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 113, 131, 137, 167, 173, 179, 197, 211, 223, 229, 241, 271, 283, 311, 313, 317, 331, 337, 347, 353, 359, 367, 373, 379, 383, 389, 397, 419, 431, 443, 461, 467, 479, 523, 541, 547, 571, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 683, 719, 743, 761, 773, 797, 811, 823, 829, 853, 859, 883, 911, 919, 929, 937, 941, 947, 953, 967, 971, 983, 997, 1223, 1229, 1283, 1367, 1373, 1523, 1571, 1613, 1619, 1811, 1823, 1997, 2113, 2131, 2137, 2179, 2311, 2347, 2383, 2389, 2467, 2617, 2647, 2659, 2683, 2719, 2797, 2953, 2971, 3137, 3167, 3229, 3271, 3313, 3331, 3347, 3359, 3373, 3389, 3461, 3467, 3541, 3547, 3571, 3613, 3617, 3631, 3643, 3659, 3673, 3719, 3761, 3797, 3823, 3853, 3911, 3919, 3929, 3947, 3967, 4211, 4229, 4241, 4271, 4283, 4337, 4373, 4397, 4523, 4547, 4643, 4673, 4919, 4937, 4967, 5113, 5167, 5179, 5197, 5347, 5419, 5431, 5443, 5479, 5641, 5647, 5653, 5659, 5683, 5743, 5953, 6113, 6131, 6173, 6197, 6211, 6229, 6271, 6311, 6317, 6337, 6353, 6359, 6367, 6373, 6379, 6389, 6397, 6547, 6571, 6619, 6653, 6659, 6661, 6673, 6719, 6761, 6823, 6829, 6883, 6911, 6947, 6967, 6971, 6983, 6997, 7211, 7229, 7283, 7331, 7523, 7541, 7547, 7643, 7673, 7823, 7829, 7853, 7883, 7919, 7937, 8167, 8179, 8311, 8317, 8353, 8389, 8419, 8431, 8443, 8461, 8467, 8641, 8647, 8719, 8761, 8929, 8941, 8971, 9137, 9173, 9241, 9283, 9311, 9337, 9397, 9419, 9431, 9461, 9467, 9479, 9547, 9613, 9619, 9631, 9643, 9661, 9719, 9743, 9811, 9829, 9859, 9883, 9929, 9941, 9967, 12113, 12347, 12647, 12659, 12953, 13229, 13313, 13331, 13613, 13967, 15443, 15641, 15647, 15683, 16229, 16547, 16619, 16661, 16673, 16823, 16829, 16883, 18311, 18353, 18443, 18461, 18719, 19661, 21283, 21523, 21613, 21997, 23167, 23719, 23761, 23911, 23929, 24229, 24337, 24373, 24547, 24919, 24967, 26113, 26317, 26947, 27211, 27283, 27541, 27673, 27823, 27883, 27919, 29137, 29173, 29311, 31223, 32467, 32647, 32719, 32797, 32971, 33331, 33347, 33359, 33461, 33547, 33613, 33617, 33797, 33911, 33967, 34211, 34283, 34337, 34673, 34919, 35419, 36131, 36229, 36353, 36373, 36389, 36571, 36653, 36761, 36947, 36997, 37547, 37643, 37853, 38167, 38317, 38431, 38461, 38971, 39241, 39397, 39419, 39461, 39619, 39631, 39719, 39829, 39883, 39929, 42131, 42179, 42467, 42683, 42719, 42797, 42953, 43271, 43313, 43331, 43541, 43613, 43853, 45179, 45197, 45641, 45659, 45953, 46229, 46271, 46337, 46619, 46829, 46997, 48179, 48311, 48353, 48647, 48761, 49547, 49613, 49811, 51229, 51283, 51613, 53359, 53617, 53719, 54547, 54673, 54919, 56113, 56131, 56197, 56311, 56359, 56659, 56911, 56983, 57283, 57331, 57829, 57853, 59419, 59467, 59743, 59929, 61223, 61283, 61613, 62131, 62137, 62311, 62347, 62383, 62467, 62617, 62659, 62683, 62971, 63313, 63331, 63347, 63389, 63467, 63541, 63617, 63659, 63719, 63761, 63823, 63853, 63929, 64271, 64283, 64373, 64919, 64937, 65167, 65179, 65419, 65479, 65647, 66173, 66271, 66337, 66359, 66373, 66571, 66653, 66883, 66947, 67211, 67523, 67547, 67829, 67853, 67883, 68311, 68389, 68443, 69337, 69431, 69467, 69661, 69829, 69859, 69929, 69941, 72383, 72467, 72617, 72647, 72719, 72797, 72953, 73331, 73547, 73571, 73613, 73643, 73673, 73823, 75167, 75347, 75431, 75479, 75641, 75653, 75659, 75683, 75743, 76367, 76379, 76673, 76829, 76883, 78167, 78179, 78311, 78317, 78467, 78929, 78941, 79241, 79283, 79337, 79397, 79613, 79631, 79811, 79829, 79967, 81223, 81283, 81373, 81619, 83137, 83389, 83617, 83719, 83761, 83911, 84211, 84229, 84523, 84673, 84919, 84967, 86113, 86131, 86197, 86311, 86353, 86389, 86719, 87211, 87523, 87541, 87547, 87643, 87853, 89137, 89431, 91229, 91283, 91367, 91373, 91571, 91811, 91823, 91997, 92179, 92311, 92347, 92383, 92467, 92647, 92683, 93229, 93719, 93761, 93911, 93967, 94229, 94397, 94547, 95419, 95443, 95479, 96211, 96337, 96353, 96661, 96823, 96911, 96997, 97283, 97523, 97547, 97673, 97829, 97883, 97919, 98179, 98317, 98389, 98419, 98443, 98467, 98641, 98929, 99137, 99173, 99241, 99397, 99431, 99643, 99661, 99719, 99829, 99859, 99929, ...}

The 3rd set for b=10 is {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 113, 131, 137, 139, 173, 179, 191, 193, 197, 199, 233, 239, 293, 311, 313, 317, 373, 379, 419, 431, 433, 439, 479, 593, 599, 613, 617, 619, 673, 677, 719, 733, 739, 797, 839, 971, 977, 1319, 1373, 1399, 1733, 1913, 1931, 1933, 1973, 1979, 1993, 1997, 1999, 2333, 2339, 2393, 2399, 2939, 3119, 3137, 3733, 3739, 3793, 3797, 4337, 4339, 4391, 4397, 4793, 4799, 5939, 6131, 6133, 6173, 6197, 6199, 6733, 6737, 6779, 7193, 7331, 7333, 7393, 9719, 13997, 13999, 17333, 19139, 19319, 19333, 19739, 19793, 19937, 19973, 19979, 19991, 19993, 19997, 23333, 23339, 23399, 23993, 29399, 31193, 31379, 37337, 37339, 37397, 43391, 43397, 43399, 43913, 43973, 47933, 47939, 59393, 59399, 61331, 61333, 61339, 61979, 61991, 67339, 71933, 73331, 73939, 139991, 139999, 193337, 197933, 199373, 199379, 199739, 199799, 199931, 199933, 233993, 239933, 293999, 373379, 373393, 439133, 593933, 593993, 613337, 619793, 673391, 673397, 673399, 719333, 739391, 739393, 739397, 739399, ..., 1979339339}

The 1st set for b=2 is {10, 11}

The 2nd set for b=2 is {10, 11, 111}

The 3rd set for b=2 is {10, 11, 101, 111, 1011, 10111, 101111}

The 1st set for b=3 is {10, 12, 21, 111}

The 2nd set for b=3 is {10, 12, 21, 212}

The 3rd set for b=3 is {10, 12, 21, 102, 122, 212, 1222, 2122}

The 1st set for b=4 is {11, 13, 23, 31, 221}

The 2nd set for b=4 is {11, 13, 23, 31, 113, 131, 211, 223, 311, 323, 331, 1211, 1223, 2113, 2131, 2311, 3211, 3323, 21211, 21223, 32113, 33211, 33323, 121211, 233323, 321223, 333323, 2121211}

The 3rd set for b=4 is {11, 13, 23, 31, 113, 131, 133, 233, 311, 1333, 2333, 13331, 133313}

The 1st set for b=8 is {13, 15, 21, 23, 27, 35, 37, 45, 51, 53, 57, 65, 73, 75, 107, 111, 117, 141, 147, 161, 177, 225, 255, 301, 343, 361, 401, 407, 417, 431, 433, 463, 467, 471, 631, 643, 661, 667, 701, 711, 717, 747, 767, 3331, 3411, 4043, 4443, 4611, 5205, 6007, 6101, 6441, 6477, 6707, 6777, 7461, 7641, 47777, 60171, 60411, 60741, 444641, 500025, 505525, 3344441, 4444477, 5500525, 5550525, 55555025, 444444441, 744444441, ...}

The 2nd set for b=8 is {13, 15, 21, 23, 27, 35, 37, 45, 51, 53, 57, 65, 73, 75, 123, 145, 153, 213, 227, 235, 265, 323, 337, 345, 351, 357, 373, 415, 445, 475, 513, 521, 535, 557, 565, 573, 615, 621, 645, 657, 673, 715, 723, 737, 753, 775, 1145, 1153, 1357, 1475, 1737, 1775, 2213, 2235, 2521, 2535, 3123, 3145, 3235, 3323, 3337, 3373, 3513, 3521, 3615, 3673, 3715, 3723, 3753, 4123, 4351, 4357, 4445, 4753, 4775, 5213, 5227, 5265, 5345, 5521, 5535, 5557, 5573, 5615, 6235, 6265, 6345, 6373, 6475, 6615, 6715, 6723, 6775, 7153, 7357, 7415, 7445, 7673, 7723, 7775, 11737, 13323, 13615, 14775, 16265, 17357, 17415, 17673, 17723, 23123, 23145, 25213, 25227, 25557, 25573, 25615, 26723, 31153, 31775, 32213, 32235, 32521, 33123, 33615, 34123, 34445, 34753, 35345, 35573, 36265, 37357, 37415, 37723, 37775, 43235, 43323, 43337, 43513, 43521, 44357, 46615, 47445, 47673, 47775, 52235, 52521, 53723, 55345, 56475, 56723, 56775, 61145, 63521, 63715, 64357, 66715, 67415, 67673, 67723, 67775, 71357, 71475, 71737, 73337, 73513, 74123, 74445, 76345, 76615, 77153, 113323, 132213, 132235, 144357, 163715, 171357, 173337, 174445, 223123, 225573, 226723, 233615, 234753, 236265, 237357, 237415, 253723, 256775, 264357, 311737, 313323, 316265, 317673, 317723, 325557, 325615, 331153, 332235, 332521, 334753, 335345, 337723, 343235, 343337, 356475, 356723, 361145, 363521, 367415, 371357, 417415, 432235, 435573, 443513, 447673, 447775, 473337, 473513, 523123, 523145, 525557, 525615, 531153, 534123, 534445, 536265, 537357, 537415, 537723, 537775, 552521, 613615, 617415, 623123, 625227, 631775, 632521, 644357, 653723, 661145, 666715, 667415, 673513, 676345, 711737, 735573, 743337, 743521, 746615, 747775, 774123, 777153, ...}

The 3rd set for b=8 is {13, 15, 21, 23, 27, 35, 37, 45, 51, 53, 57, 65, 73, 75, 131, 153, 155, 211, 213, 235, 277, 351, 357, 373, 513, 533, 535, 573, 577, 657, 737, 753, 1317, 1531, 1533, 1537, 1555, 2111, 2117, 2135, 2353, 2773, 3513, 3517, 3571, 3733, 5331, 5355, 5735, 5773, 6571, 7371, 7531, 7533, 15311, 15317, 15373, 15377, 15553, 21113, 21117, 21177, 21355, 23537, 27733, 27735, 35133, 35171, 35713, 37333, 53555, 73717, 153173, 153733, 153773, 211135, 211177, 277331, 277333, 351331, 351717, 535553, ...}

The 1st set for b=12 is {11, 15, 17, 1B, 25, 27, 31, 35, 37, 3B, 45, 4B, 51, 57, 5B, 61, 67, 6B, 75, 81, 85, 87, 8B, 91, 95, A7, AB, B5, B7, 221, 241, 2A1, 2B1, 2BB, 401, 421, 447, 471, 497, 565, 655, 665, 701, 70B, 721, 747, 771, 77B, 797, 7A1, 7BB, 907, 90B, 9BB, A41, B21, B2B, 2001, 200B, 202B, 222B, 229B, 292B, 299B, 4441, 4707, 4777, 6A05, 6AA5, 729B, 7441, 7B41, 929B, 9777, 992B, 9947, 997B, 9997, A0A1, A201, A605, A6A5, AA65, B001, B0B1, BB01, BB41, 600A5, 7999B, 9999B, AAAA1, B04A1, B0B9B, BAA01, BAAA1, BB09B, BBBB1, 44AAA1, A00065, BBBAA1, AAA0001, B00099B, AA000001, ...}

The 2nd set for b=12 is {11, 15, 17, 1B, 25, 27, 31, 35, 37, 3B, 45, 4B, 51, 57, 5B, 61, 67, 6B, 75, 81, 85, 87, 8B, 91, 95, A7, AB, B5, B7, 111, 117, 11B, 125, 131, 13B, 145, 157, 167, 16B, 175, 181, 18B, 195, 1A7, 1B5, 1B7, 217, 21B, 225, 237, 24B, 251, 25B, 267, 285, 291, 295, 2AB, 315, 325, 327, 33B, 34B, 357, 35B, 375, 391, 3AB, 3B5, 3B7, 415, 41B, 427, 431, 435, 437, 457, 45B, 46B, 481, 485, 48B, 511, 517, 51B, 527, 531, 535, 545, 557, 575, 585, 587, 58B, 591, 5B5, 5B7, 611, 615, 617, 61B, 637, 63B, 661, 66B, 675, 687, 68B, 695, 6A7, 711, 71B, 727, 735, 737, 745, 751, 767, 76B, 775, 785, 791, 817, 825, 835, 851, 85B, 867, 881, 88B, 8A7, 8AB, 8B5, 8B7, 91B, 927, 95B, 987, 995, 9A7, 9AB, 9B5, A11, A17, A27, A35, A37, A3B, A45, A4B, A5B, A6B, A87, A91, A95, AA7, AAB, AB7, B11, B15, B1B, B25, B31, B37, B45, B61, B67, B6B, B91, B95, BB5, BB7, 1125, 1167, 118B, 11A7, 11B7, 121B, 125B, 1295, 133B, 1391, 13B5, 1431, 1437, 1457, 148B, 1517, 1585, 1587, 1591, 1615, 168B, 16A7, 1711, 1727, 1735, 1745, 1751, 176B, 1785, 1825, 18AB, 18B7, 1995, 1A11, 1A17, 1A35, 1A45, 1A6B, 1A87, 1AAB, 1AB7, 1B15, 1B67, 1BB5, 2111, 211B, 2131, 2181, 21A7, 21B7, 221B, 224B, 2267, 2291, 2325, 2327, 234B, 23AB, 23B7, 2415, 2435, 2457, 2481, 2485, 248B, 2535, 2545, 2557, 258B, 2615, 2617, 2637, 2675, 2687, 26A7, 2737, 2745, 276B, 2825, 2835, 285B, 2927, 29B5, 2A11, 2A35, 2A3B, 2A5B, 2A87, 2A95, 2AA7, 2B31, 2B61, 2B67, 2B95, 2BB7, 3117, 311B, 3145, 3167, 3175, 3195, 3225, 324B, 3285, 3291, 3327, 3357, 341B, 3427, 3435, 3457, 346B, 3481, 3485, 348B, 3517, 351B, 3587, 358B, 35B7, 3617, 3637, 3661, 366B, 3687, 3767, 3791, 3851, 38B5, 395B, 39A7, 3A11, 3A91, 3A95, 3AB7, 3B11, 3B1B, 3B61, 3BB7, 4111, 411B, 413B, 4145, 41B5, 4217, 4225, 4237, 4291, 42AB, 4357, 4375, 43B5, 4435, 445B, 4485, 4531, 4535, 4557, 4591, 4611, 4615, 463B, 4687, 468B, 4711, 4727, 4737, 4775, 4825, 4881, 488B, 48A7, 491B, 4987, 4A5B, 4A91, 4B15, 4B37, 4B95, 5117, 511B, 5131, 513B, 5145, 5167, 516B, 51B7, 521B, 5237, 525B, 5267, 5285, 5295, 52AB, 5327, 5375, 5391, 53AB, 53B5, 541B, 5435, 5457, 548B, 5527, 5531, 5545, 5585, 5587, 558B, 55B5, 5615, 5637, 563B, 566B, 56A7, 5711, 5727, 5735, 5785, 5817, 5835, 5867, 58AB, 58B5, 58B7, 5927, 595B, 5987, 59AB, 5A11, 5A17, 5A27, 5A45, 5A4B, 5A5B, 5A6B, 5A95, 5AAB, 5B1B, 5B25, 5B37, 5B67, 5B91, 5B95, 6117, 613B, 6175, 61A7, 61B7, 6327, 633B, 634B, 6357, 6375, 6391, 63B5, 63B7, 6437, 646B, 6527, 6575, 6591, 6617, 663B, 6675, 671B, 6751, 6825, 6881, 68B5, 6995, 69B5, 6A11, 6A17, 6A27, 6A4B, 6AAB, 6B15, 6B25, 7111, 711B, 7125, 7131, 716B, 7175, 718B, 71B5, 71B7, 7225, 7295, 7391, 73AB, 7415, 7427, 7435, 7457, 745B, 7511, 7531, 7585, 7587, 758B, 75B5, 7611, 7617, 761B, 7637, 763B, 7661, 766B, 7675, 7687, 771B, 7737, 7767, 776B, 7817, 7851, 7867, 795B, 79AB, 7A27, 7A35, 7A6B, 7A95, 7B11, 7B15, 7B25, 7B37, 7B67, 7B6B, 7B91, 8125, 816B, 8175, 8195, 81B7, 8251, 8291, 82AB, 833B, 8357, 835B, 83AB, 841B, 8427, 8431, 8511, 8517, 8575, 8591, 85B7, 8637, 866B, 8835, 8881, 888B, 88AB, 8995, 8A11, 8A37, 8A91, 8A95, 8AA7, 8B37, 8B45, 9131, 9145, 918B, 9195, 91A7, 9217, 9251, 9267, 92AB, 9315, 9375, 9485, 9557, 9575, 9591, 95B7, 9615, 9687, 9695, 9711, 9737, 9775, 9785, 988B, 98A7, 98B7, 991B, 9927, 99AB, 9A17, 9A35, 9AAB, 9B1B, 9B45, 9B61, A117, A13B, A145, A157, A1A7, A225, A24B, A285, A295, A315, A35B, A3B7, A457, A46B, A485, A511, A535, A575, A63B, A661, A675, A68B, A695, A711, A71B, A735, A745, A767, A76B, A791, A817, A825, A851, A85B, A88B, A987, A9B5, AA45, AA6B, AAB7, AB45, AB6B, AB91, ABB5, B125, B157, B167, B181, B18B, B1B5, B21B, B2AB, B315, B325, B327, B357, B3AB, B3B5, B481, B51B, B527, B5B7, B615, B617, B63B, B675, B68B, B711, B727, B785, B835, B85B, B8A7, B8B5, B91B, B987, B9A7, B9B5, BA27, BA4B, BA87, BBB7, ...}

The 3rd set for b=12 is {11, 15, 17, 1B, 25, 27, 31, 35, 37, 3B, 45, 4B, 51, 57, 5B, 61, 67, 6B, 75, 81, 85, 87, 8B, 91, 95, A7, AB, B5, B7, 111, 117, 11B, 157, 171, 175, 17B, 1B1, 1B5, 1B7, 251, 255, 25B, 271, 277, 27B, 315, 357, 35B, 375, 377, 3B5, 3B7, 455, 457, 45B, 4B1, 4BB, 511, 517, 51B, 575, 577, 5B1, 5B5, 5B7, 5BB, 611, 615, 617, 61B, 675, 6B1, 751, 817, 851, 855, 85B, 871, 8B5, 8B7, 91B, 955, 95B, A77, AB7, ABB, B71, 1115, 11B7, 1577, 157B, 1711, 1715, 1751, 1755, 1757, 17BB, 1B15, 1B17, 1B51, 1B7B, 2555, 2557, 2715, 2717, 2771, 27B1, 27B7, 3155, 315B, 35B1, 35B7, 35BB, 3755, 375B, 3771, 377B, 3B51, 3B55, 3B75, 3B7B, 4557, 455B, 4571, 4577, 457B, 4B15, 4BB1, 5117, 511B, 51B7, 575B, 5771, 5777, 577B, 5B17, 5B1B, 5B55, 5B75, 5BB1, 6115, 6117, 6171, 6175, 617B, 61B7, 6751, 6757, 675B, 6B15, 6B17, 7511, 8175, 8511, 8515, 8517, 85B7, 8717, 8B55, 8B71, 8B75, 9551, 9557, 95B7, A777, AB7B, ABB5, B711, 11151, 1115B, 11B71, 11B75, 15771, 157B1, 17115, 1711B, 17151, 17515, 17551, 17555, 17557, 1755B, 17571, 17575, 1757B, 17BB1, 1B155, 1B177, 1B17B, 1B517, 1B51B, 25551, 25577, 27151, 27155, 2715B, 27B17, 27B77, 31551, 315B5, 375B5, 375BB, 37715, 3B515, 3B557, 3B55B, 3B7B5, 4557B, 45775, 45777, 4B155, 4BB11, 4BB15, 511B7, 51B71, 575BB, 57711, 57717, 577B7, 577BB, 5B175, 5B1B7, 5B55B, 5B751, 5BB17, 61151, 6115B, 61755, 61757, 617B5, 617B7, 61B75, 61B77, 67517, 67575, 675B5, 6B151, 6B171, 75111, 75115, 85155, 85175, 85177, 8517B, 85B75, 85B7B, 8717B, 8B551, 8B555, 8B557, 8B711, 8B717, 8B757, 95511, 95517, 95575, A7775, A777B, AB7BB, ABB51, ABB5B, B7111, B7115, 111511, 11151B, 11B717, 11B71B, 15771B, 157B17, 171155, 171515, 175517, 175575, 17557B, 1755B7, 175715, 17575B, 1B1555, 1B1771, 1B1775, 1B17B1, 255515, 255775, 271555, 2715B1, 27B177, 27B17B, 27B771, 375B55, 375BB5, 377151, 3B5155, 3B5157, 3B515B, 3B5571, 3B557B, 3B55B7, 3B7B5B, 457771, 457775, 4B1551, 4BB155, 4BB157, 511B77, 51B717, 575BBB, 577117, 577175, 577B75, 5B55B1, 5B55BB, 5BB171, 611511, 61151B, 617557, 617575, 61757B, 617B75, 61B755, 675171, 675751, 675755, 675757, 675B51, 6B1711, 751115, 851557, 851751, 85175B, 8517B7, 8717B1, 8717BB, 8B555B, 8B5575, 8B7117, 8B7171, 8B717B, 8B7571, 955115, 955171, 955175, 955177, 955755, 95575B, A77755, AB7BB1, AB7BBB, ABB511, B71157, ...}

sweety439 2020-12-27 02:58

Now my GitHub page [URL="https://github.com/xayahrainie4793/minimal-primes-and-left-right-truncatable-primes"]https://github.com/xayahrainie4793/minimal-primes-and-left-right-truncatable-primes[/URL] extended to include these numbers:

* [URL="https://primes.utm.edu/glossary/page.php?sort=MinimalPrime"]minimal primes[/URL] base b (file name: "kernel b"): Data is available for bases 2 to 81 and 84, 90, 96, 100, 108, 120, 126, 128, 144, 150 (for bases > 50 there is only such primes < 2^32 listed) (data for unsolved families (file name: "left b") is available for bases 2 to 50)
* [URL="https://primes.utm.edu/glossary/page.php?sort=LeftTruncatablePrime"]left-truncatable primes[/URL] base b (file name: "ltp b"): Data is available for bases 2 to 45 (for bases 18, 20, 22, 24, 26, 28, 30, 32-36, 38-45 there is only such primes < 2^32 listed)
* [URL="https://primes.utm.edu/glossary/page.php?sort=RightTruncatablePrime"]right-truncatable primes[/URL] base b (file name: "rtp b"): Data is available for bases 2 to 52
* two-sided primes (primes which are both left-truncatable and right-truncatable) base b (file name: "twoside b"): Data is available for bases 2 to 68
* minimal composites (composites in the sense of minimal primes) base b (file name: "mc b"): Data is available for bases 2 to 65

sweety439 2020-12-27 03:16

For minimal composites, I only searched to 4 digits, and I doubt that there will be some minimal composites with >=5 digits in some base

[B]Theorem: If base b has minimal composite with >=4 digits, then either b=2 or b is divisible by 6[/B]

Proof: If b is odd, and there is a minimal composite with >=3 digit in base b, let string [I]xyz[/I] be any three-digit substring of this minimal composite number, since in odd base, [I]xy[/I] == [I]x[/I] + [I]y[/I] (mod 2), [I]xz[/I] == [I]x[/I] + [I]z[/I] (mod 2), [I]yz[/I] == [I]y[/I] + [I]z[/I] (mod 2), thus we have [I]xy[/I] + [I]xz[/I] + [I]yz[/I] == 2([I]x[/I] + [I]y[/I] + [I]z[/I]) == 0 (mod 2), and at least one of [I]xy[/I], [I]xz[/I], [I]yz[/I] must be even (0 is counted as even number), since all even numbers except 0 and 2 are composite, if all of [I]xy[/I], [I]xz[/I], [I]yz[/I] are noncomposite, then one of them must be 0 or 2, but if we let the [I]x[/I] be the leading digit, then [I]x[/I] cannot be 0, and neither [I]xy[/I] nor [I]xz[/I] can be 0 or 2 (since any odd base b is >=3, "base 1" does not exist, and 0, 2 are both single-digit number in base b, and hence written as "00", "02" for [I]xy[/I] and [I]xz[/I]), thus, [I]yz[/I] must be 0 or 2, and ([I]y[/I], [I]z[/I]) is either (0, 0) or (0, 2), and if [I]x[/I] is not 1, then [I]xy[/I] = [I]x[/I] * base (b), and is composite, thus [I]x[/I] must be 1, thus, [I]xyz[/I] is either 100 or 102, and the only such numbers (i.e. with leading digit 1 and all substrings containing the 1 are either 100 or 102) with n (>=4) digits are 1000...000 and 1000...0002 with n digits, however, both of them have 100 as substring, and 100 = base(b)^2 and hence composite, which is contradiction, [B]thus, for any odd base b, there are no minimal composites with >=3 digits, while 100 and 102 are the only two possible exceptions.[/B]

If b is == 1 mod 3, let string [I]xyzw[/I] be any three-digit substring, then at least one of [I]xy[/I], [I]xz[/I], [I]yz[/I] is divisible by 3, unless ([I]x[/I], [I]y[/I], [I]z[/I]) == (0, 1, 1) or (0, 2, 2) (or their permutations) mod 3, and in this case, at least one of [I]0w[/I], [I]1w[/I] (or [I]2w[/I]), [I]11w[/I] (or [I]22w[/I]) is divisible by 3, thus [I]xyzw[/I] or any strings containing [I]xyzw[/I] cannot be minimal composites. (i.e. [B]for any base b == 1 mod 3, there are no minimal composites with >=4 digits[/B])

If b is == 2 mod 3, let string [I]xyzw[/I] be any three-digit substring, then at least two of [I]x[/I] mod 3, [I]y[/I] mod 3, [I]z[/I] mod 3, [I]w[/I] mod 3, are the same (by [URL="https://en.wikipedia.org/wiki/Pigeonhole_principle"]pigeonhole principle[/URL], 4 digits in 3 possible modulos), and the connection of these two digits are divisible by 3, thus [I]xyzw[/I] or any strings containing [I]xyzw[/I] cannot be minimal composites (the only exception is base 2, which the number divisible by 3 is exactly 11 (=3), and 1111 (=15) is minimal composite). (i.e. [B]for any base b == 2 mod 3 (except base 2), there are no minimal composites with >=4 digits[/B])


All times are UTC. The time now is 15:42.

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.