![]() |
How to solve: k(b^m)-z=n*d. ?
How to solve: k(b^m)-z=n*d. ?
With know values for k,b,z,n. |
[QUOTE=JM Montolio A;481851]How to solve: k(b^m)-z=n*d. ?
With know values for k,b,z,n.[/QUOTE] You can limit things modularly at very least. |
Are the variables integers, real numbers, or something else?
Are you looking for one solution or a parametrization of all solutions? (Of course there may be no solutions.) |
Type? Integer, of course.
Solutions? The first m. |
[url]http://m.wolframalpha.com/input/?i=solve+k*(b%5Em)-z%3Dn*d+for+m&incCompTime=true[/url]
|
and you get something with log(), pi, i, etc.
Not. Solve: 29(5^m)-11 = 13*D |
[url]http://m.wolframalpha.com/input/?i=solve+29%285%5Em%29-11+%3D+13*D+for+m[/url]
|
Not.
29(5^M)-11=13D. 13 + 11 = (5^0)*24 13 + 24 = (5^0)*37 13 + 37 = (5^2)*2 13 + 2 = (5^1)*3 13 + 3 = (5^0)*16 13 + 16 = (5^0)*29. exponents: 0,0,2,1,0,0. M = sum exponents = 3. D = 1+1*1+1*1*1+1*1*1*25+1*1*1*25*5+1*1*1*25*5*1= 278. Answer: 29(5^3)-11=13*278. And 3 is the min value. Is the same thing im posting all the month. |
How do you get
1+1*1+1*1*1+1*1*1*25+1*1*1*25*5+1*1*1*25*5*1 in D = 1+1*1+1*1*1+1*1*1*25+1*1*1*25*5+1*1*1*25*5*1= 278. Thanks in advance. |
[QUOTE=a1call;481902]How do you get
1+1*1+1*1*1+1*1*1*25+1*1*1*25*5+1*1*1*25*5*1 in D = 1+1*1+1*1*1+1*1*1*25+1*1*1*25*5+1*1*1*25*5*1= 278. Thanks in advance.[/QUOTE] In particular the underlined 1 [U]1[/U]+1*1+1*1*1+1*1*1*25+1*1*1*25*5+1*1*1*25*5*1 and why is there no +1*1*1*25*5*1*1 added to the end? Is the added 1 and missing last addend a general rule or subject to variations? Thank you for the reply. |
[QUOTE=JM Montolio A;481890]
Solve: 29(5^m)-11 = 13*D[/QUOTE] Mod 5: -1=3*D \\ D is 3 mod 5 Mod 13: 3(5^m)=-2 \\ m is congruent to 3 mod 12 Anyways. |
All times are UTC. The time now is 22:26. |
Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.