![]() |
Lepore factorization nr. 105 (Bruteforce)
[url]https://www.academia.edu/49978974/Lepore_factorization_nr_105_Bruteforce[/url]
What do you think? |
ERRATA CORRIGE
[2*(x-1)*((x-1)+1)] < [2*x*(x+1)-y*(y-1)/2] <= [2*(x)*(x+1)] 1 <= y < (sqrt(32*x+1)+1)/2 |
[CODE]
/* This algorithm is generic and does not exploit that q / p < 2 Plus it uses a single A and not many A */ A=9+16*a;//choose A with many small factors if(M % 4 ==1){ M=3*M; } if((M % 8 == 3){ N=M; }else{ N=5*M; } while(1){ if([1/4*(sqrt(N+1)+2)] != (int)[1/4*(sqrt(N+1)+2)]){ x=(int)[1/4*(sqrt(N+1)+2)]; }else{ x=[1/4*(sqrt(N+1)+2)]-1; } P=4*x+2-sqrt[4*(2*x+1)^2-N]; Q=N/P; if (P is integer && (P % M) !=0 && (Q % M) !=0){ breack; } N=N*A } p=GCD(P,M); [/CODE] |
I tried to implement it without good results
[url]https://github.com/Piunosei/Lepore-factorization-nr.-105-Bruteforce-/blob/main/lepore_105.c[/url] |
the new theory applied to Lepore Factorization nr. 105
If the theory is correct to factor RSA with q / p <2 it would seem O ((log_2 (n)) ^ 2) but I am studying how to implement it in O (2 * (log_2 (n))),after lunch I will study this third hypothesis and the implementation tonight |
Hello
Unfortunately O((log_2(n))^2) does not work O(2*(log_2(n))) does not work It would seem that O(K*[sqrt(8*sqrt(n)-31)-1]/16) work K depends on the number n I still don't know the order of size of K for example for n=390644893234047643 -> K=4 |
with a parallel distribution on many computers, finding p and q takes as long as possible
Example on 10 computers for n = 390644893234047643 would take 16150 cycles or 1615 for each computer |
use m not 2*m here [url]https://www.academia.edu/50318218/Crypto_factorization_example[/url]
15 digit 3194383 12 digit 63245 9 digit 3195 p= 9 digit [2*(h-1)*((h-1)+1)] < [2500000062500000-1/2 (h - x) (-1 + h - x + 2 y)+2 (h - x) (1 + h + x)] <= [2*(h)*(h+1)] , 2*(x)*(x+1)-y*(y-1)/2=2500000062500000 , h=62500001 37500000<=x<37503195 -> 3195 p=12 digit [2*(h-1)*((h-1)+1)] < [2500000000062500000000-1/2 (h - x) (-1 + h - x + 2 y)+2 (h - x) (1 + h + x)] <= [2*(h)*(h+1)] , 2*(x)*(x+1)-y*(y-1)/2=2500000000062500000000 , h=12500000000 37500000000<=<<37500063245 -> 63245 P=15 digit [2*(h-1)*((h-1)+1)] < [2500000000000062500000000000-1/2 (h - x) (-1 + h - x + 2 y)+2 (h - x) (1 + h + x)] <= [2*(h)*(h+1)] , 2*(x)*(x+1)-y*(y-1)/2=2500000000000062500000000000 , h=62500000000001 37500000000000<=x<37500003194383 -> 3194383 |
@CRGreathouse I know you don't talk to me anymore but I have achieved an extraordinary result with your number
N=390644893234047643 sqrt(390644893234047643/(15/10))=a , (15/10*a+a-4)/8=x , 2*x*(x+1)-y*(y-1)/2=(390644893234047643-3)/8 -> y=63790420,........ [2*(h)*(h-1)] < [(390644893234047643-3)/8+k*(k-1)/2] <= [2*(h)*(h+1)] , 2*(x)*(x+1)-y*(y-1)/2=(390644893234047643-3)/8 , x-(sqrt(32*x+1)+1)/2 <h<x+(sqrt(32*x+1)+1)/2 , k=63790420+j*100000 for j=25 see please range h here [url]https://www.wolframalpha.com/input/?i=%5B2*%28h%29*%28h-1%29%5D++%3C+++%5B%28390644893234047643-3%29%2F8%2Bk*%28k-1%29%2F2%5D+++%3C%3D+++%5B2*%28h%29*%28h%2B1%29%5D++%2C++2*%28x%29*%28x%2B1%29-y*%28y-1%29%2F2%3D%28390644893234047643-3%29%2F8++%2C+x-%28sqrt%2832*x%2B1%29%2B1%29%2F2+%3Ch%3Cx%2B%28sqrt%2832*x%2B1%29%2B1%29%2F2%2Ck%3D63790420%2Bj*100000%2Cj%3D25[/url] total cost for factorize N=390644893234047643 is 25*10=250 step |
[QUOTE=VBCurtis;584367]I don't think you count steps very well.
Consider trial factoring. Each prime tried is a single step, and a bunch of them don't work. If you find one that does, the number of steps to find that factor is the number of TOTAL trials, including all the things that didn't work. Your "method" appears to be such a thing- try a bunch of parameter selections until something works, and then claim "it only took 250 steps!". How many parameters did you try against this number that took thousands of steps, or didn't work at all? That's the actual "number of steps" you took to factor it.[/QUOTE] yes, I'll try to explain myself better knowing that the ratio q / p <2 then I will test: q / p > 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 and I will execute them at the same time so it will be the actual time for 10 we consider a 30-digit number with p and q also not prime numbers 188723059539473758658629052963=323456789054341*583456789054343 q/p=1,8038167965499768547404880957269 N=188723059539473758658629052963 , sqrt(N/(18/10))=a , (18/10*a+a-4)/8=x , 2*x*(x+1)-y*(y-1)/2=(N-3)/8 -> y=64759908643727,........ N=188723059539473758658629052963 , 2*(h)*(h-1)<(N-3)/8+k*(k-1)/2<=2*(h)*(h+1) , 2*(x)*(x+1)-y*(y-1)/2=(N-3)/8 , x-(sqrt(32*x+1)+1)/2<h<x+(sqrt(32*x+1)+1)/2 , k=64759908643727+2399*[COLOR="Red"]100000000[/COLOR] I still can't establish the exact size order of the number in red, it would appear from the first tests to be 10 ^ [((digit p) +1) / 2] , but I'm still studying this number. In theory, if the above were confirmed, since k <= y <p with y being the order size of p-1 and the first digit of y is given by the 10 ratios we will have our solution in 10 * {[[ digit p] -1] -1 - [((digit p) +1) / 2]} I repeat still do not know well the number in red. |
maybe i quantified the r number in red
red value = r N=188723059539473758658629052963 , sqrt(N/(18/10))=a , (18/10*a+a-4)/8=x , 2*x*(x+1)-y*(y-1)/2=(N-3)/8 , (sqrt(32*x+1)+1)/2=b , b*(b-1)/2-(sqrt(32*(x-b)+1)+1)/2*[(sqrt(32*(x-b)+1)+1)/2-1]/2=r r=120441770,...... N=188723059539473758658629052963 , 2*(h)*(h-1)<(N-3)/8+k*(k-1)/2<=2*(h)*(h+1) , 2*(x)*(x+1)-y*(y-1)/2=(N-3)/8 , x-(sqrt(32*x+1)+1)/2<h<x+(sqrt(32*x+1)+1)/2 , k=64759908643727+1992*120441770 |
range ok h >=1
I tried to write the pseudo code [CODE]i=0 while(i<10) { solve this system and memorize y(i) and r(i) sqrt(N/((10+i)/10))=a , ((10+i)/10*a+a-4)/8=x , 2*x*(x+1)-y*(y-1)/2=(N-3)/8 , (sqrt(32*x+1)+1)/2=b , b*(b-1)/2-(sqrt(32*(x-b)+1)+1)/2*[(sqrt(32*(x-b)+1)+1)/2-1]/2=r } j=0 while (!(N mod p ==0 && p!=1 && p!=N)){ i=0 while(i<10) { solve this system with unique integer solution of h 2*(h)*(h-1)<(N-3)/8+k*(k-1)/2<=2*(h)*(h+1) , 2*(x)*(x+1)-y*(y-1)/2=(N-3)/8 , x-(sqrt(32*x+1)+1)/2<h<x+(sqrt(32*x+1)+1)/2 , k=y(i)+j*r(i) in the range [y(i)+(j-1)*r(i),y(i)+j*r(i)] in log_2 search the point if the system admit solutions if you find it { x-(sqrt(32*x+1)+1)/2=h aproximate x to integer 2*(x)*(x+1)-y*(y-1)/2=(N-3)/8 calculate p p=4*x+1-2*(y-1) } i++ } j++ }[/CODE] |
(*) here I have to improve, multiplying the range by 10 ^ (tot), but I still don't know tot
|
[CODE]
i=0 while(i<10) { solve this system and memorize y(i) and r(i) sqrt(N/((10+i)/10))=a , ((10+i)/10*a+a-4)/8=x , 2*x*(x+1)-y*(y-1)/2=(N-3)/8 , (sqrt(32*x+1)+1)/2=b , [b*(b-1)/2-(sqrt(32*(x-b)+1)+1)/2*[(sqrt(32*(x-b)+1)+1)/2-1]/2]/2=r } j=0 while (!(N mod p ==0 && p!=1 && p!=N)){ i=0 while(i<10) { solve this system with unique integer solution of h 2*(h)*(h-1)<(N-3)/8+k*(k-1)/2<=2*(h)*(h+1) , 2*(x)*(x+1)-y*(y-1)/2=(N-3)/8 , x-(sqrt(32*x+1)+1)/2<h<x+(sqrt(32*x+1)+1)/2 , k=y(i)+j*r(i) in the range [y(i)+(j-2)*r(i),y(i)+j*r(i)] in log_2 search 2>[range of x]>=1 if exist (*) if exist { choose the only possible integer solution of x x-(sqrt(32*x+1)+1)/2=h 2*(x)*(x+1)-y*(y-1)/2=(N-3)/8 calculate p p=4*x+1-2*(y-1) } i++ } j++ }[/CODE] Example N=390644893234047643 , sqrt(N/(15/10))=a , (15/10*a+a-4)/8=x , 2*x*(x+1)-y*(y-1)/2=(N-3)/8 , (sqrt(32*x+1)+1)/2=b , [b*(b-1)/2-(sqrt(32*(x-b)+1)+1)/2*[(sqrt(32*(x-b)+1)+1)/2-1]/2]/2=r r=71437,..... N=390644893234047643 , 2*(h)*(h-1)<(N-3)/8+k*(k-1)/2<=2*(h)*(h+1) , 2*(x)*(x+1)-y*(y-1)/2=(N-3)/8 , x-(sqrt(32*x+1)+1)/2<h<x+(sqrt(32*x+1)+1)/2 , k=63790420+j*71437 suppose we have arrived at j =34 k in the range [63790420+32*71437;63790420+34*71437] with biinarie research find x=159757905 for k=66207577 N=390644893234047643 , 2*(h)*(h-1)<(N-3)/8+k*(k-1)/2<=2*(h)*(h+1) , 2*(x)*(x+1)-y*(y-1)/2=(N-3)/8 , x-(sqrt(32*x+1)+1)/2<h<x+(sqrt(32*x+1)+1)/2 , k=66207577 infatti range x (159757904,46492;159757905,46503) range size >= 1 & <2 |
If we establish how far x can be from the [COLOR="Red"]capofila[/COLOR] at mos (order size)t, here
r=71501 , r=(2*h+sqrt(32*h+81)+9)/2-(2*h-sqrt(32*h+49)+7)/2 , (2*x-sqrt(32*x+1)-1)/2<h<(2*x+sqrt(32*x+1)+1)/2 [COLOR="red"]159757809[/COLOR]<x<159793564 in this case 95 we will establish the maximum time N=390644893234047643 , sqrt(N)=a , (a+a-4)/8=x , (sqrt(32*x+1)+1)/2=b/2 b=70712 (71501-70712)*distance from the [COLOR="red"]capofila[/COLOR] 789*distance from the [COLOR="red"]capofila[/COLOR] |
[CODE]
check=0 i=0 while(i<10) { solve this system sqrt(N/((10+i)/10))=a , ((10+i)/10*a+a-4)/8=x , 2*x*(x+1)-b*(b-1)/2=(N-3)/8 } memorize b(i) C=0 while (check==0){ i=0 while(i<10 && check==0) { h=x-b(i)/2-C // b/2 must be integer , [2*(h-1)*(h-1+1)] < N-3)/8-b(i)/2*(4*x+1-2*(y-1)) <= [2*h*(h+1)] , 2*(x)*(x+1)-y*(y-1)/2=(N-3)/8 while(min_h <= max_h && check==0){ x=h+b/2+C 2*(x)*(x+1)-y*(y-1)/2=(N-3)/8 calculate p p=4*x+1-2*(y-1) if(N mod p ==0 && p!=1 && p!=N){ check=1 break } min_h++ } i++ } C++ }[/CODE] Example N=390644893234047643 , sqrt(N/(15/10))=a , (15/10*a+a-4)/8=x , 2*x*(x+1)-b*(b-1)/2=(N-3)/8 b = 63790420 h=x-(63790420)/2-C , [2*(h-1)*(h-1+1)] < (390644893234047643-3)/8-(63790420)/2*(4*x+1-2*(y-1)) <= [2*h*(h+1)] , 2*(x)*(x+1)-y*(y-1)/2=(390644893234047643-3)/8 per C=-7454 127855236<=h<127855255 -> size range = 19 per h=127855241 , h=x-(63790420)/2-7454 -> x=159757905 the problem is that size range of h is decreasing for C=0 127580838<=h<127584034 -> size range = 3196 for C=3727 127775161<=h<127775188 -> size range =27 an exponential decrease would seem to our advantage ********************************************************************* UPDATE: I tried to solve in x and I noticed that the first valid value is our x = 159757905 if it would always happen the cost of factoring 390644893234047643 would be 7454 * 10 = 74540 Tomorrow morning I will continue with other tests [url]https://www.wolframalpha.com/input/?i=solve+h%3Dx-%2863790420%29%2F2-7454+%2C+%5B2*%28h-1%29*%28h-1%2B1%29%5D+++%3C++%28390644893234047643-3%29%2F8-%2863790420%29%2F2*%284*x%2B1-2*%28y-1%29%29++%3C%3D+++%5B2*h*%28h%2B1%29%5D++%2C+++2*%28x%29*%28x%2B1%29-y*%28y-1%29%2F2%3D%28390644893234047643-3%29%2F8+%2Ch+%2Cy[/url] |
[QUOTE=Alberico Lepore;584549]
********************************************************************* UPDATE: I tried to solve in x and I noticed that the first valid value is our x = 159757905 if it would always happen the cost of factoring 390644893234047643 would be 7454 * 10 = 74540 Tomorrow morning I will continue with other tests [url]https://www.wolframalpha.com/input/?i=solve+h%3Dx-%2863790420%29%2F2-7454+%2C+%5B2*%28h-1%29*%28h-1%2B1%29%5D+++%3C++%28390644893234047643-3%29%2F8-%2863790420%29%2F2*%284*x%2B1-2*%28y-1%29%29++%3C%3D+++%5B2*h*%28h%2B1%29%5D++%2C+++2*%28x%29*%28x%2B1%29-y*%28y-1%29%2F2%3D%28390644893234047643-3%29%2F8+%2Ch+%2Cy[/url][/QUOTE] unfortunately this is not true. But x is very close to min_range_x I tested on a number of 30 digits with p and q of 15 digits and the result is 37 N=188723059539473758658629052963 N=188723059539473758658629052963 , sqrt(N/(18/10))=a , (18/10*a+a-4)/8=x , 2*x*(x+1)-b*(b-1)/2=(N-3)/8 b=64759908643727 h=x-(64759908643726)/2-88973930 , [2*(h-1)*(h-1+1)] < (188723059539473758658629052963-3)/8-(64759908643726)/2*(4*x+1-2*(y-1)) <= [2*h*(h+1)] , 2*(x)*(x+1)-y*(y-1)/2=(188723059539473758658629052963-3)/8 range x 113364197263548<=x<=113364197263741 size_range 193 distance x 37 x=113364197263585 I need to be able to quantify distance x or size_range_x total cost [10*my_quantify *88973930] about N ^ (1/3) It's still a very heavy bruteforce, but I'm happy |
In search of RSA factorization
Link Language [MATHS & ITA] [URL="https://www.linkedin.com/pulse/alla-ricerca-della-fattorizzazione-rsa-alberico-lepore/"]https://www.linkedin.com/pulse/alla-ricerca-della-fattorizzazione-rsa-alberico-lepore/[/URL] |
[QUOTE=Alberico Lepore;591559]In search of RSA factorization
Link Language [MATHS & ITA] [URL="https://www.linkedin.com/pulse/alla-ricerca-della-fattorizzazione-rsa-alberico-lepore/"]https://www.linkedin.com/pulse/alla-ricerca-della-fattorizzazione-rsa-alberico-lepore/[/URL][/QUOTE] For sure [IF everything is correct] I would not choose a semi-prime RSA in the form N = 4 * ((2 ^ k) * w) +3 for a suitable k and more ..... |
#aiuto su #TeoriaDeiNumeri
Gentilmente qualcuno mi aiuterebbe su Teoria dei Numeri ? tutte le variabili che nominerò sono interi [Aiuto1] E' vero che tutti i numeri nella forma N=4*((2^k)*w)+3 si possono esprimere in questa forma ? 4*((2^k)*x+1)^2-(2*((2^(k))*y)-1)^2 [Aiuto2] E' vero che per trasformare un qualsiasi numero dispari in un numero nella forma N=4*((2^k)*w)+3 per un k scelto si proceda in questo modo ? se N-3 mod 2^(i+1) è diverso da 0 moltiplichi per N per 2^i+1 con i che parte da 1 ed arriva a k+1 [Aiuto3] Questa relazione 4*((2^k)*x+1)^2>=4*((2^k)*x+1)^2-(2*((2^(k))*y)-1)^2>4*((2^k)*(x-1)+1)^2 ci dice quanto deve essere piccola y rispetto ad x conoscendo k Si potrebbe creare un algoritmo di fattorizzazione che per ogni step di i+1 del secondo aiuto [Aiuto2] se y verifica quella disequazione e si trova in O(1) il valore di x e quindi 2 fattori P e Q taliche P=p*s e Q=q*t dove p e q sono i fattori del numero dispari iniziale e quindi facendo massimo comun divisore tra il numero iniziale e P o Q troveremmo p e q il tutto aumentando i di un unità ad ogni step fino ad un k che ci riveli la fattorizzazione p*q ? [Aiuto4] Termina sicuramente l'algoritmo creato? Qual è la complessità computazionale per fattorizzare un numero dispari N=p*q ? E' forse casuale questa complessità? |
Pseudo-code
& Explanation [ITA] [url]https://www.matematicamente.it/forum/viewtopic.php?f=26&t=215668&p=8513821#p8513821[/url] |
All times are UTC. The time now is 06:21. |
Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.