![]() |
range ok h >=1
I tried to write the pseudo code [CODE]i=0 while(i<10) { solve this system and memorize y(i) and r(i) sqrt(N/((10+i)/10))=a , ((10+i)/10*a+a-4)/8=x , 2*x*(x+1)-y*(y-1)/2=(N-3)/8 , (sqrt(32*x+1)+1)/2=b , b*(b-1)/2-(sqrt(32*(x-b)+1)+1)/2*[(sqrt(32*(x-b)+1)+1)/2-1]/2=r } j=0 while (!(N mod p ==0 && p!=1 && p!=N)){ i=0 while(i<10) { solve this system with unique integer solution of h 2*(h)*(h-1)<(N-3)/8+k*(k-1)/2<=2*(h)*(h+1) , 2*(x)*(x+1)-y*(y-1)/2=(N-3)/8 , x-(sqrt(32*x+1)+1)/2<h<x+(sqrt(32*x+1)+1)/2 , k=y(i)+j*r(i) in the range [y(i)+(j-1)*r(i),y(i)+j*r(i)] in log_2 search the point if the system admit solutions if you find it { x-(sqrt(32*x+1)+1)/2=h aproximate x to integer 2*(x)*(x+1)-y*(y-1)/2=(N-3)/8 calculate p p=4*x+1-2*(y-1) } i++ } j++ }[/CODE] |
(*) here I have to improve, multiplying the range by 10 ^ (tot), but I still don't know tot
|
[CODE]
i=0 while(i<10) { solve this system and memorize y(i) and r(i) sqrt(N/((10+i)/10))=a , ((10+i)/10*a+a-4)/8=x , 2*x*(x+1)-y*(y-1)/2=(N-3)/8 , (sqrt(32*x+1)+1)/2=b , [b*(b-1)/2-(sqrt(32*(x-b)+1)+1)/2*[(sqrt(32*(x-b)+1)+1)/2-1]/2]/2=r } j=0 while (!(N mod p ==0 && p!=1 && p!=N)){ i=0 while(i<10) { solve this system with unique integer solution of h 2*(h)*(h-1)<(N-3)/8+k*(k-1)/2<=2*(h)*(h+1) , 2*(x)*(x+1)-y*(y-1)/2=(N-3)/8 , x-(sqrt(32*x+1)+1)/2<h<x+(sqrt(32*x+1)+1)/2 , k=y(i)+j*r(i) in the range [y(i)+(j-2)*r(i),y(i)+j*r(i)] in log_2 search 2>[range of x]>=1 if exist (*) if exist { choose the only possible integer solution of x x-(sqrt(32*x+1)+1)/2=h 2*(x)*(x+1)-y*(y-1)/2=(N-3)/8 calculate p p=4*x+1-2*(y-1) } i++ } j++ }[/CODE] Example N=390644893234047643 , sqrt(N/(15/10))=a , (15/10*a+a-4)/8=x , 2*x*(x+1)-y*(y-1)/2=(N-3)/8 , (sqrt(32*x+1)+1)/2=b , [b*(b-1)/2-(sqrt(32*(x-b)+1)+1)/2*[(sqrt(32*(x-b)+1)+1)/2-1]/2]/2=r r=71437,..... N=390644893234047643 , 2*(h)*(h-1)<(N-3)/8+k*(k-1)/2<=2*(h)*(h+1) , 2*(x)*(x+1)-y*(y-1)/2=(N-3)/8 , x-(sqrt(32*x+1)+1)/2<h<x+(sqrt(32*x+1)+1)/2 , k=63790420+j*71437 suppose we have arrived at j =34 k in the range [63790420+32*71437;63790420+34*71437] with biinarie research find x=159757905 for k=66207577 N=390644893234047643 , 2*(h)*(h-1)<(N-3)/8+k*(k-1)/2<=2*(h)*(h+1) , 2*(x)*(x+1)-y*(y-1)/2=(N-3)/8 , x-(sqrt(32*x+1)+1)/2<h<x+(sqrt(32*x+1)+1)/2 , k=66207577 infatti range x (159757904,46492;159757905,46503) range size >= 1 & <2 |
If we establish how far x can be from the [COLOR="Red"]capofila[/COLOR] at mos (order size)t, here
r=71501 , r=(2*h+sqrt(32*h+81)+9)/2-(2*h-sqrt(32*h+49)+7)/2 , (2*x-sqrt(32*x+1)-1)/2<h<(2*x+sqrt(32*x+1)+1)/2 [COLOR="red"]159757809[/COLOR]<x<159793564 in this case 95 we will establish the maximum time N=390644893234047643 , sqrt(N)=a , (a+a-4)/8=x , (sqrt(32*x+1)+1)/2=b/2 b=70712 (71501-70712)*distance from the [COLOR="red"]capofila[/COLOR] 789*distance from the [COLOR="red"]capofila[/COLOR] |
[CODE]
check=0 i=0 while(i<10) { solve this system sqrt(N/((10+i)/10))=a , ((10+i)/10*a+a-4)/8=x , 2*x*(x+1)-b*(b-1)/2=(N-3)/8 } memorize b(i) C=0 while (check==0){ i=0 while(i<10 && check==0) { h=x-b(i)/2-C // b/2 must be integer , [2*(h-1)*(h-1+1)] < N-3)/8-b(i)/2*(4*x+1-2*(y-1)) <= [2*h*(h+1)] , 2*(x)*(x+1)-y*(y-1)/2=(N-3)/8 while(min_h <= max_h && check==0){ x=h+b/2+C 2*(x)*(x+1)-y*(y-1)/2=(N-3)/8 calculate p p=4*x+1-2*(y-1) if(N mod p ==0 && p!=1 && p!=N){ check=1 break } min_h++ } i++ } C++ }[/CODE] Example N=390644893234047643 , sqrt(N/(15/10))=a , (15/10*a+a-4)/8=x , 2*x*(x+1)-b*(b-1)/2=(N-3)/8 b = 63790420 h=x-(63790420)/2-C , [2*(h-1)*(h-1+1)] < (390644893234047643-3)/8-(63790420)/2*(4*x+1-2*(y-1)) <= [2*h*(h+1)] , 2*(x)*(x+1)-y*(y-1)/2=(390644893234047643-3)/8 per C=-7454 127855236<=h<127855255 -> size range = 19 per h=127855241 , h=x-(63790420)/2-7454 -> x=159757905 the problem is that size range of h is decreasing for C=0 127580838<=h<127584034 -> size range = 3196 for C=3727 127775161<=h<127775188 -> size range =27 an exponential decrease would seem to our advantage ********************************************************************* UPDATE: I tried to solve in x and I noticed that the first valid value is our x = 159757905 if it would always happen the cost of factoring 390644893234047643 would be 7454 * 10 = 74540 Tomorrow morning I will continue with other tests [url]https://www.wolframalpha.com/input/?i=solve+h%3Dx-%2863790420%29%2F2-7454+%2C+%5B2*%28h-1%29*%28h-1%2B1%29%5D+++%3C++%28390644893234047643-3%29%2F8-%2863790420%29%2F2*%284*x%2B1-2*%28y-1%29%29++%3C%3D+++%5B2*h*%28h%2B1%29%5D++%2C+++2*%28x%29*%28x%2B1%29-y*%28y-1%29%2F2%3D%28390644893234047643-3%29%2F8+%2Ch+%2Cy[/url] |
[QUOTE=Alberico Lepore;584549]
********************************************************************* UPDATE: I tried to solve in x and I noticed that the first valid value is our x = 159757905 if it would always happen the cost of factoring 390644893234047643 would be 7454 * 10 = 74540 Tomorrow morning I will continue with other tests [url]https://www.wolframalpha.com/input/?i=solve+h%3Dx-%2863790420%29%2F2-7454+%2C+%5B2*%28h-1%29*%28h-1%2B1%29%5D+++%3C++%28390644893234047643-3%29%2F8-%2863790420%29%2F2*%284*x%2B1-2*%28y-1%29%29++%3C%3D+++%5B2*h*%28h%2B1%29%5D++%2C+++2*%28x%29*%28x%2B1%29-y*%28y-1%29%2F2%3D%28390644893234047643-3%29%2F8+%2Ch+%2Cy[/url][/QUOTE] unfortunately this is not true. But x is very close to min_range_x I tested on a number of 30 digits with p and q of 15 digits and the result is 37 N=188723059539473758658629052963 N=188723059539473758658629052963 , sqrt(N/(18/10))=a , (18/10*a+a-4)/8=x , 2*x*(x+1)-b*(b-1)/2=(N-3)/8 b=64759908643727 h=x-(64759908643726)/2-88973930 , [2*(h-1)*(h-1+1)] < (188723059539473758658629052963-3)/8-(64759908643726)/2*(4*x+1-2*(y-1)) <= [2*h*(h+1)] , 2*(x)*(x+1)-y*(y-1)/2=(188723059539473758658629052963-3)/8 range x 113364197263548<=x<=113364197263741 size_range 193 distance x 37 x=113364197263585 I need to be able to quantify distance x or size_range_x total cost [10*my_quantify *88973930] about N ^ (1/3) It's still a very heavy bruteforce, but I'm happy |
In search of RSA factorization
Link Language [MATHS & ITA] [URL="https://www.linkedin.com/pulse/alla-ricerca-della-fattorizzazione-rsa-alberico-lepore/"]https://www.linkedin.com/pulse/alla-ricerca-della-fattorizzazione-rsa-alberico-lepore/[/URL] |
[QUOTE=Alberico Lepore;591559]In search of RSA factorization
Link Language [MATHS & ITA] [URL="https://www.linkedin.com/pulse/alla-ricerca-della-fattorizzazione-rsa-alberico-lepore/"]https://www.linkedin.com/pulse/alla-ricerca-della-fattorizzazione-rsa-alberico-lepore/[/URL][/QUOTE] For sure [IF everything is correct] I would not choose a semi-prime RSA in the form N = 4 * ((2 ^ k) * w) +3 for a suitable k and more ..... |
#aiuto su #TeoriaDeiNumeri
Gentilmente qualcuno mi aiuterebbe su Teoria dei Numeri ? tutte le variabili che nominerò sono interi [Aiuto1] E' vero che tutti i numeri nella forma N=4*((2^k)*w)+3 si possono esprimere in questa forma ? 4*((2^k)*x+1)^2-(2*((2^(k))*y)-1)^2 [Aiuto2] E' vero che per trasformare un qualsiasi numero dispari in un numero nella forma N=4*((2^k)*w)+3 per un k scelto si proceda in questo modo ? se N-3 mod 2^(i+1) è diverso da 0 moltiplichi per N per 2^i+1 con i che parte da 1 ed arriva a k+1 [Aiuto3] Questa relazione 4*((2^k)*x+1)^2>=4*((2^k)*x+1)^2-(2*((2^(k))*y)-1)^2>4*((2^k)*(x-1)+1)^2 ci dice quanto deve essere piccola y rispetto ad x conoscendo k Si potrebbe creare un algoritmo di fattorizzazione che per ogni step di i+1 del secondo aiuto [Aiuto2] se y verifica quella disequazione e si trova in O(1) il valore di x e quindi 2 fattori P e Q taliche P=p*s e Q=q*t dove p e q sono i fattori del numero dispari iniziale e quindi facendo massimo comun divisore tra il numero iniziale e P o Q troveremmo p e q il tutto aumentando i di un unità ad ogni step fino ad un k che ci riveli la fattorizzazione p*q ? [Aiuto4] Termina sicuramente l'algoritmo creato? Qual è la complessità computazionale per fattorizzare un numero dispari N=p*q ? E' forse casuale questa complessità? |
Pseudo-code
& Explanation [ITA] [url]https://www.matematicamente.it/forum/viewtopic.php?f=26&t=215668&p=8513821#p8513821[/url] |
All times are UTC. The time now is 07:43. |
Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.