![]() |
welcome in new person
|
Have a nice day
|
:rant: Do it again and you will be put in the sin bin for a while.
|
All possible
Have a nice day In my world, conjecture is like probably true |
Sounds good
smile |
appreciate your efforts
|
Primes as not a possible numerical anagram ... interesting
Here is some simple minded Maple code. The hardest part was counting all the 2s. > for a from 2 by 2 to 100 do if isprime(222222222222222219+a) then print(222222222222222219+a, "is prime") end if end do; 222222222222222221, "is prime" 222222222222222281, "is prime" A pair of p18. (18 digit prime numbers) Have a nice day. I put another code snippet at my web-page - [URL="mattanderson.fun"]mattanderson.fun[/URL] Try to find under "more files" 'prime but not anagram.txt' okay, after some manual searching, I found a not-anagram cosisting of 63 twos and one 7. > for a from 2 by 2 to 100 do if isprime(2222222222222222222222222222222222222222222222222222222222222219+a) then print(2222222222222222222222222222222222222222222222222222222222222219+a, "is prime") end if end do; 2222222222222222222222222222222222222222222222222222222222222227, "is prime" 2222222222222222222222222222222222222222222222222222222222222287, "is prime" > evalf(log10(2222222222222222222222222222222222222222222222222222222222222219+a)); 63.34678751 > # so we are looking at a pair of 64 digit prime numbers. - maybe an original calculation (?World record?) > > Anyone else can find bigger not-anagram primes using a similar technique. > for a from 2 by 2 to 1000 do if isprime(22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222219+a) then print(22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222219+a, "is prime") end if end do; 22222222222222222222222222222222222222222222222222222222222222222222222222222\ 222222222222222223, "is prime" > evalf(log10(22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222223)); 94.34678747 > # a 95 digit number > > It is clear to me that anyone with the right software, and a little effort, one can find bigger than a 95 digit , not an anagram prime number. Maple is a fine tool. Have a nice day. Wishing you all the best. |
[QUOTE=MattcAnderson;617998]Primes as not a possible numerical [B]anagram [/B]... interesting
222222222222222221, "is prime" 222222222222222281, "is prime" A pair of p18. (18 digit prime numbers) ...etc...[/QUOTE] Every input is valuable. But all of what you wrote are [B]not [/B]anagrams. |
I found a thing
Since I have a handy dandy tool that can deal with large integers (Maple Software)
I have found a 121 digit prime. > temp := 2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221; tem2 := 2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222227; if isprime(temp) then print(temp, " is prime") end if; if isprime(tem2) then print(tem2, "is prime") end if; 22222222222222222222222222222222222222222222222222222222222222222222222222222\ 22222222222222222222222222222222222222222221, " is prime" > evalf(log10(temp)); 120.3467875 > # so we have found a 121 digit prime number such that any permutation of its digits yields a composite number. # good fun :--) # Matt And to be sure, an anagram deals with the English language. This is a fast and loose post. Cheers !!! |
[QUOTE=MattcAnderson;618016]This is a fast and loose post.[/QUOTE]
So is [URL="https://www.youtube.com/watch?v=hRrBnI5L0u8"]this.[/URL] Imagine a young child with a C64, and a subscription to [URL="https://www.scientificamerican.com/article/mandelbrot-set/"]Scientific American[/URL]. While that child worked at a sawmill to pay for his later education. And coded... Day in. Day out... And, stayed away many nights wondering if there really was a dog... :chalsall: |
All times are UTC. The time now is 22:09. |
Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.