![]() |
I made up some parameters and ran this C103 as a quartic SNFS job on CADO. Took a 2-hyperthreaded instance about 6 minutes to solve on a 12-core machine with 18 other threads busy.
|
4 Attachment(s)
And six more base-2 brilliant number, one of which took much longer than expected to find..
[CODE] 2^353-4203 = 125269909676882800262400105725282077739582106921689791 * 146467647140855997175976549181141923664201888942622379 2^353+20321 = 107212617965684231006696661224016764909923510204087201 * 171136469531909496395965898436670289930931414420683713 2^355-6237 = 201078246063474095502015538594857010445540999246436799 * 364992022501105116452215910637465538969268898994717469 2^355+11609 = 212926542994048279183611705107994489885983607534577991 * 344682042359245646786699688221203535450205665111934047 2^357-84009 = 453147361357734286103874959805167254938456672363539113 * 647841845458687143039115572227866832044273303789018751 2^357+293447 = 470652756196708146570444118328602847134424064755521003 * 623746103643411393320202884671105782953351092003850773 [/CODE] None of these were in the factordb before at least, so they may be new. |
1 Attachment(s)
[QUOTE=swishzzz;576780]Test run of Amazon EC2 free tier. A 103 digit snfs job with factmsieve.py takes around 2.5 hours on a single t2 micro Windows instance running at 10% CPU capacity, perhaps this will be faster on a Linux instance with CADO.
[CODE] 2^339 + 15885 Sat Apr 24 15:56:40 2021 p51 factor: 887592350957138861091733941658539740396245192826267 Sat Apr 24 15:56:40 2021 p52 factor: 1261696734859514200896533536322632897894845904544119 [/CODE][/QUOTE] 2^339 ± c completed: [CODE] 2^339 - 27235 = 967306904908920452789078319450002924493095732788319 * 1157721882688666313356029082874219101278312435085187 [/CODE] |
4 Attachment(s)
Four more base-2 brilliant numbers:
[CODE] 2^359-123577 = 818923988648227215894707705730371540540812518512510431 * 1433919762596343433061717035212209825301021813200029081 2^359+14621 = 1005099120748900459161798514928920510471822535126047147 * 1168313917648207456964919118126527398761685430631874647 2^361-6273 = 1560537277762292011030721646497096890825992876952316309 * 3009915387784249643267311161037214234010646089476820931 2^361+44571 = 1588267509671791256308972554753220446511580018944216381 * 2957364006343175263301783757664193291901358679995452983 [/CODE] Proof files are attached. |
And another batch finished:
[CODE] 2^363-291 = 4094013899900989030912375965276208433376145195035983021 * 4589222489607338458027850363512336418671632190977908977 2^363+163109 = 3594544799178917497808832006387639836453189974351828487 * 5226904020359514021042583817732061323376054356093003891 2^365-21055 = 6610188871706148247866877699982575091248185129696213497 * 11369321528836272916753163939935476417901514113750418441 2^365+25151 = 6975722917193176731536583299621002374191571619112667517 * 10773559033362830224264470417875672248024627915449550699 [/CODE] Proof files are attached. |
4 Attachment(s)
[QUOTE=Branger;591248]Proof files are attached.[/QUOTE]
Well, apparently not. Let's try that again. |
Brilliant 201-digit number (10^201-c)
"Releasing" 10^201-c.
Tested any 1 <= c <= 40000. |
Releasing 10^199+c as well. No p100 * p100 found from 0 < c < 100000.
|
After a lot of work by Eric Jeancolas, the table of minimal and maximal base-2 brilliant numbers is complete up to exponent 400, as you can see at [url]https://www.alpertron.com.ar/BRILLIANT2.HTM[/url].
|
2 Attachment(s)
Two more for the table:
[CODE] 10^181-28457 = 1976780995904575262824882988600377384132720583677328095507348810273221986844127586224818989 * 5058729328498020382937746413638967841933983271360558098096714142401565169191733122358525587 10^181+38439 = 1054300060000730056488062242818121661270786887706547586912142454641191605667380983978269333 * 9484965788575479583285807708150981397722931500035054082588713947753467817475117863857748683 [/CODE] Proof files are attached. I'm still working on 10^221+c, and I'm currently at about c=27000. It is slow going, however, so I will have to see how long my patience lasts. |
All times are UTC. The time now is 02:36. |
Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.