mersenneforum.org

mersenneforum.org (https://www.mersenneforum.org/index.php)
-   Aliquot Sequences (https://www.mersenneforum.org/forumdisplay.php?f=90)
-   -   Odds and ends....and class records (https://www.mersenneforum.org/showthread.php?t=11673)

biwema 2010-01-06 20:50

Too short to be a downdriver run:

727008:
[CODE] 693 . 7650243797342825233578073497139860072849482534449203291244669081218934780015818709112476731847821813087136 = 2^5 * 239070118666963288549314796785620627276546329201537602851395908788091711875494334659764897870244431658973
694 . 7411173678675861945028758700354239445572936205247665688393273172430843068140324374452711833977577381428226 = 2 * 19^2 * 10264783488470722915552297368911688982788000284276545274782926831621666299363330158521761542905231830233
695 . 4321473848646174347447517192311821061753748119680425560683612196112721512031961996737661609563102600529236 = 2^2 * 7^3 * 1194733 * 2833301357064111049 * 58796344535443804411 * 886106477084750987826700211 * 17859854291284289139087032885159[/CODE]
later resulting in a 2^2 * 7

smh 2010-01-25 09:11

[QUOTE=rodac;195327]267240 has probably a record of fastest increasing; reaching:

80 digits at i: 192
90 digits at i: 217
100 digits at i: 248
110 digits at i: 279
115 digits at i: 294

... and why not 120 digits... and more... on the same run... ?[/QUOTE]
993834 has been increasing slightly faster:

80 digits at i: 191
90 digits at i: 217
100 digits at i: 245

Greebley 2010-01-29 16:49

Edit: 2^2*7 had a bug in it. Will double check the rest.

I did some statistics on the current open sequences and calculated the chances of losing a driver at various values. The following are the aproximate chances of losing the driver near 100 digits (I took the number that lost the driver for 98-102 digits over the number that kept it over same digit range).

Downdriver: 1/121
2*3: 1/460
2^2*7: ?
2^3*3*5: 1/745
2^3*3^2*5: 1/41 (unknown if this is guide or driver)
2^3*3: 1/40
2^4*31: 1/374
2^5*3*7: 1/109
2^5*3^2*7: 1/26 (guide)
2^6*127: 1/411
2^9*3*11*31 - to few sequences to really tell - best guess: 1/50
guide(becomes a driver): 1/83


One can guestimate the value for 2^12*8191, 1/8190 should have 8191^2 and when it does there is a high chance the rest has a power of two less than 12 - so maybe 1/12,000.

These results are still not quite the true odds because we don't include terminating or merging sequences. I think to get the real statistics you would have to include every sequence to the point that it merges. All sequences would also have to be over 100 digits, because sequences that 'look hopeful' tend to get done first which adds some bias.

10metreh 2010-01-31 13:26

An oddity from sequence 800544:
[code] 439 . 1323626280448561414679231876389736536258051576413109296115013800026639429878229379710418272294 = 2 * 3^2 * 67 * [color=red]59977177999496209319137[/color] * 78802648154387457339567015737 * 232215515433884340680133184743297583121
...
442 . 2321251415288887658433427336322253879423772650957960955463742031379739273448737604785967345722 = 2 * 3^2 * 53 * 296519 * 2906089 * 543435019 * [color=red]191155950316310598317[/color] * 27181719542669502983329990580073385685847359288401[/code]

Both of the red factors have only 4 even digits.

kar_bon 2010-01-31 17:08

occurences of first primes as factors in open seqs
 
currently there're 133 seqs with the first 6 primes = 2 * 3 * 5 * 7 * 11 * 13 in at least one index.

10 seqs with primes upto 17:
82728:i669, 166746:i193, 352440:i385, 356784:i386, 441066:i13, 539070:i137, 617520i:397, 756630:i73, 776820:i434, 886158:i514
all only in one index.

and last but not least: 617520i:397 contains 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19!

there's none upto p=23.

Batalov 2010-02-22 06:59

Nice line with p23.p24.p25.p25.p25 --
[CODE]556276:6779 . 788871340341057562889230923678722189737792940800022551501177995987544153414255611539335238436104792425694403749441775012787706257880 = 2^3 * 5 * 883 * 27079631 * 91094766202869033075899 * 361000310979526340890151 * 1248561491484813471034241 * 2030361154450937185791841 * 9893694771484052066672231[/CODE]

schickel 2010-03-07 07:57

Here's one...
 
When fivemack was asking about breaking free from 2[sup]6[/sup] * 127, there was some discussion about the expected number of factors for a number of a particular size:[QUOTE=CRGreathouse;204661]I would expect more like 5 ≈ log(log(1e100 / 254)) - 1/2 - 1/127 other prime factors, if they behave like random multiples of 254 near 1e100.[/QUOTE] That reminded me of this one. From 144984:6688, I had a c121 with 14 prime factors (in the middle of a downdriver run, no less):[code] 6688 . c121 = 2 * 5 * 13 * 181 * 10853 * 11497 * 168323 * 4446553 * 148832063 * 10271812637 * 119178081073 * 21222183693661 * 15858816602948484947 * 12538578285067602823518549611014697[/code]

Greebley 2010-03-18 23:41

Index 1400 of 32064 got an interesting division - the most even one I have noticed:
[URL="http://factorization.ath.cx/search.php?id=16882"][COLOR=#000000]22[/COLOR][/URL] · [URL="http://factorization.ath.cx/search.php?id=2"][COLOR=#000000]7[/COLOR][/URL] · [URL="http://factorization.ath.cx/search.php?id=163714252"][COLOR=#550000]141337098081956055582878973187822362872974752865820637846643[/COLOR][/URL]<60> · [URL="http://factorization.ath.cx/search.php?id=163714253"][COLOR=#550000]376618571857859561706479274607050481447946580753139592355389[/COLOR][/URL]<60>

Batalov 2010-03-19 04:04

How about [URL="http://factorization.ath.cx/search.php?id=20130374"]this one[/URL] or [URL="http://factorization.ath.cx/search.php?id=25877774"]this one[/URL]?

Batalov 2010-03-23 01:36

For the aliquot sequences, the nicest splits I've seen were
[URL="http://factorization.ath.cx/search.php?id=83072871"]147192:i4553[/URL] => p63.p63
[URL="http://factorization.ath.cx/search.php?id=40140472"]139314:i3340[/URL] => p63.p63
and
[URL="http://factorization.ath.cx/search.php?id=39579943"]195528:i7895[/URL] => p65.p65

ugly2dog 2010-04-10 22:53

I few high powers of 2 in seq. 2067978.

1180 . 60482497794809947448503630131914278051158568368583539896170978218349495928101036961161221427200 = [B]2^12[/B] * 3 * 5^2 * 1103 * 2687 * 9629 * 178154517758053 * 38724632181530053778703400991480469197518633289131017188956763143
1181 . 139765128779225763308026343152329328835059142407965016509709908736220958169633349219310820208640 = [B]2^12[/B] * 3 * 5 * 37 * 73 * 283 * 8854872999680546558795629 * 336088974495229049915802089849836145047325452988129444250383
1182 . 327451645115181930847185437808090126585501407773405501794793861717616010118003100165481666969600 =[SIZE=2][B] 2^20[/B][/SIZE] * 3 * 5^2 * 37^2 * 197 * 3347 * 6701 * 32917 * 7453845849115822529 * 2232976792047469886306731 * 1256423733730872333051552521
1183 . 791560335671021836509239846295375438919468419785812799402925507532596863455224844427759931709440 =[B] 2^11[/B] * 3 * 5 * 61 * 26975952892591634881181372701999 * 15658717284982750554096530504749656160775960128121812307143
1184 . 1782328670777694019937108829113696284032904788509101610135131378027799442365025578982821163970560 = [B]2^12[/B] * 3 * 5 * 113 * 3422235175915553047 * 75015030784530030893452237565797193932613676529263608977090324103545259

10metreh 2010-04-11 07:02

This makes me think: what is the largest "jump" from one index to the next, i.e. what is the largest percentage size increase from one index to the next (and therefore the most abundant number) in a sequence below 4M?

Batalov 2010-04-12 06:10

Something close to -99.9% on the minus side:
[FONT=Arial Narrow] 0 . 3999991 = 1997 * 2003
1 . 4001 = 4001[/FONT]
[FONT=Arial Narrow][/FONT]
The plus side can produce more than +231%, ...a multiple of some primorial?
[FONT=Arial Narrow] 0 . 2042040 = 2^3 * 3 * 5 * 7 * 11 * 13 * 17
1 . 6667080 = 2^3 * 3 * 5 * 7 * 7937 => 3.264x
[/FONT]
[FONT=Arial Narrow] 0 . 3063060 = 2^2 * 3^2 * 5 * 7 * 11 * 13 * 17
1 . 10145772 = 2^2 * 3^2 * 7 * 13 * 19 * 163 => 3.312x[/FONT]

too lazy to check...

EdH 2010-04-12 14:23

A few random range checks produced the following:

The greatest rise for the random ranges was:
243.3566078309864906458215352189223478158 percent in sequence 834808 at index 704

834808 indices:
[code]
703. 424012445327225941145006193107571101638903013008894679753679443679035032080 = 2^4 * 3^2 * 5 * 7 * 11 * 17 * 24697 * 56333 * 13364939327 * 24195376671578387120613289503298064865045220687723
704. 1455874749056779178065557761215961115449598847466650920077007989689185828336 = 2^4 * 3^2 * 7 * 1787 * 322709 * 90859166850748661375537 * 27565070101335739485919987809061307495927
[/code]The greatest fall for the random ranges was:
-99.87988583333656695015491376296695043712 percent in sequence 2834803 at index 1

(Obviously, I didn't include 3999991) :smile:

2834803 indices:
[code]
0. 2834803 = 1453 * 1951
1. 3405 = 3 * 5 * 227
[/code]All the greatest fall results were index 1.

A more thorough check would be strenuous for the db communications, since I don't have all the elf files locally cached and would probably run for a few hours.

Mini-Geek 2010-04-12 14:28

[url]http://www.research.att.com/~njas/sequences/A004394[/url] could come in handy.
e.g.: [URL="http://factordb.com/search.php?se=1&aq=3603600&action=range&fr=0&to=1"]3603600[/URL] goes up 265.939393...% from index 0 to 1.

EdH 2010-04-12 15:55

[quote=Mini-Geek;211483][URL="http://www.research.att.com/%7Enjas/sequences/A004394"]http://www.research.att.com/~njas/sequences/A004394[/URL] could come in handy.
e.g.: [URL="http://factordb.com/search.php?se=1&aq=3603600&action=range&fr=0&to=1"]3603600[/URL] goes up 265.939393...% from index 0 to 1.[/quote]
Much more time and resource conservative than my script, which did concur.:smile:

Especially, since I didn't build in a routine to change 154^2 into 23716 in my script, so I have to go fix such representations manually in the elf.:sad:

schickel 2010-04-27 08:50

Boy, talk about a tough crowd....
 
1 Attachment(s)
In line this this gem:[QUOTE=10metreh;173916]

Isn't it called the [B]down[/B]driver?

[code] 2869 . 1090617960007232478963479793418262141962390 = 2 * 5 * 6473 * 168109 * 100225001976161007320247959612627
2870 . 872809324473146057279321670026224226436170 = 2 * 5 * 11 * 101 * 8263729729 * 8903999865583 * 1067687280002921
2871 . 858039913971636658259221374205492622813110 = 2 * 5 * 7 * 41 * 787 * 853 * 1134682349 * 392489037709442421185227
2872 . 954542247032790100033799064896741071343690 = 2 * 5 * 7 * 29 * 97 * 1297 * 753341 * 4961303579448905969511088367
2873 . 1099325607660619302519141906493069974871990 = 2 * 5 * 7 * 19 * 73 * 251 * 6619 * 6815311977475907954410284078419
2874 . 1323758440819616276612494765223708141224010 = 2 * 5 * 7 * 19^2 * 7549 * 290471 * 73526707 * 324912320078636196271
2875 . 1550660033710886007582967793919782889406390 = 2 * 5 * 7 * 19 * 1423 * 15161 * 324329 * 166627401554863283194498909
2876 . 1809751860779086545007288523685855196225610 = 2 * 5 * 7 * 19 * 1360715684796305672937810920064552779117
2877 . 2109109311434273793053606926100056807634230 = 2 * 5 * 163 * 1293932092904462449726139218466292520021
2878 . 1710578226819699358537956046812438711470714 = 2 * 463 * 20899 * 5455543 * 6538937 * 2477771828342658390671[/code] [/QUOTE]Here's a couple from 171018 (I haven't lost any ground yet, thank goodness!):[code] 2025 . c118 = 2 * 11 * 1361 * 5609253288741307 * 47370433690968500535990184919824585372778322238196276674064443053404497436183966275418993953022621
2026 . c118 = 2 * 7 * 11 * 13 * 29 * 61 * 337 * 22961 * 1065527 * 727534211077 * 429143283855743 * 113832695859069931561 * 154599691855680837098677 * 31616216038756338651471798707
2027 . c118 = 2 * 7 * 13 * 203194138831 * 12217447717269086877329924718536393280068214603143 * 12618527886699607741577435435806401008655753475466855767
2028 . c118 = 2 * 7 * 13 * 26506335482174446915925079047464926866490223583816122304446905746383946694752076962085579853835373017258832391472401
2029 . c118 = 2 * 5 * 7 * 191 * 1354814317 * 2098503269 * 8270959048421674080607 * 12983557509511306303729198530651884316923530039388787387637547110758121687
2030 . c118 = 2 * 5 * 41 * 379 * 297433729071057262376499480051632487425753453713 * 94317677885063555476424500014601334782434039279561259356233600629
2031 . c118 = 2 * 5 * 1612474939556857 * 95704631493552941809 * 2397558734104846313681398602810851486981898282865857583355412003753297917261036089
2032 . c118 = 2 * 5 * 185873 * 18045476688607 * 75892185965791994583492562304273687 * 1162795765500412003838318136831185675906649204050124546950611679
2033 . c118 = 2 * 5 * 1201578847102187055104891 * 1490412237578105001566737 * 4639931715670945090179406262744213 * 28497721893434403837590920928109631
2034 . c118 = 2 * 41 * 23102370787339537692911053596822211744653564755324130018428704121908500058804677938645142722572984273671683208214187
2035 . c118 = 2 * 31 * 3119 * 231067 * 22749100865499085325202100057491147538173741516559909786653779911356579454879714655859803424048904558820179
2036 . c117 = 2 * 7 * 4723 * 91591 * 3281933 * 84235372451509 * 26221284473677023466331 * 12709187212462368803611563097736698771594514910528995501284618639
[/code]and[code] 2058 . c112 = 2 * 5 * 79 * 293 * 431 * 479 * 20593758866675352243033120765001379194139 * 4047729680269640214481062600792216874004086036523368037762183
2059 . c112 = 2 * 5 * 11 * 13 * 134146328393878517460440682602291211539 * 17382214094952979267513242896457696576598023757845279156373473024870757
2060 . c112 = 2 * 5 * 61 * 2663 * 11132699 * 34048709 * 151130873 * 7080384258872017 * 85920333574499088434254198097063 * 65654441417587504118881401908370901
2061 . c112 = 2 * 5 * 13 * 61 * 107 * 233 * 17569 * 888367405133071996208191115153701926444255865889089459857740214108389740177781834066263412071180723
2062 . c112 = 2 * 5 * 13 * 19 * 8702411 * 71364086499319 * 985789273599235747 * 2986977443419679075475649 * 681313236102516706329306271926416054686546207
2063 . c112 = 2 * 5 * 11 * 13 * 41 * 107 * 258677443 * 2535469273 * 18740812076587 * 41524689266435868773329235875031756566776683218832890431276239233455494909
2064 . c112 = 2 * 5^2 * 13 * 29 * 41 * 59 * 397 * 829 * 2029 * 5608869279593 * 1532102400027914436677 * 14519404407830900136027825361312932713189876403501547140799001
2065 . c112 = 2 * 5^2 * 29 * 596805499 * 68754898747345627 * 74566483082287159709000132602733125102481068422799936795957522074242910746235771817
2066 . c112 = 2 * 5^2 * 29 * 181 * 21734584845705573649 * 718765125119056462406168721804700579313805006791482807293007515480843406305962813121011
2067 . c112 = 2 * 5^2 * 271 * 7417 * 214481 * 29916412759 * 360350980491395732683767383009256795291667 * 16492913450717443410916882124830964282026135519
2068 . c112 = 2 * 5^2 * 7^2 * c109[/code]I'll have to see if Clifford has any stats on the longest run during a downdriver without losing a digit....the 2 * 5^2 * 7^2 sure makes for an interesting situation! :unsure:

I'm hoping it manages to break 100!

firejuggler 2010-05-27 19:22

[code]
0. 6671070323497881696403979895082072399614158451917545681942017208119134701880063579999656049450688484271 = 58767016187377007874915025699882460094567363784937 * 113517254342595142750021507529216219123186779929018583
1. 113576021358782519757896422554916101583281347292803521 = 29 * 109 * 434249 * 8246228227 * 2402959328558519 * 4175625658238707853
2. 4994599846760057249781135214530589807869262283196479 = 10592767870413282167 * 471510365171930311005665276418937
3. 471510365171940903773535689701105 = 5 * 17 * 181 * 30647407550987384060678302873
4. 130895077650267117323157031590239 = 11 * 71 * 807125132701 * 207649748952132119
5. 13910744487979884776765780649121 = 761 * 1049 * 17425699825476594036452689
6. 31557942383938111800016619879 = 137 * 1373 * 226819129 * 739669815173651
7. 253502518983711821229429241 = 197 * 136099 * 9454990978450996247
8. 1288686905389935462425159 = 19 * 73 * 263 * 353 * 132299 * 75645646537
9. 95557215259309181286841 = 29 * 607 * 5428461924632686547
10. 3457930245991021348679 = 53 * 809 * 1901 * 42423815001727
11. 71454558878936984761 = 17 * 31 * 135587398252252343
12. 6643782514360365383 = 101 * 56891 * 1156246592513
13. 65897962052896393 = 7^2 * 251 * 1049 * 1597 * 3198319
14. 11185885589695607 = 7^2 * 131 * 431449 * 4038997
15. 1925630080044793 = 1925630080044793

[/code]103 digits to 54, to 52, to 32 digits, down to a 16 digit prime ... hard hard fall (c103 come from 36684 [URL="http://mersenneforum.org/showpost.php?p=216364&postcount=256"]here[/URL]) and only 15 step

axn 2010-05-27 19:40

[QUOTE=firejuggler;216369]103 digits to 54, to 52, to 32 digits, down to a 16 digit prime ... hard hard fall (c103 come from 36684 [URL="http://mersenneforum.org/showpost.php?p=216364&postcount=256"]here[/URL]) and only 15 step[/QUOTE]

Odd numbers are not very interesting for aliquot sequences.

firejuggler 2010-05-27 20:45

ok.... then another odditty... even number...
251233597904 : 406

[code]
406. 41038840984846674664033027212414586476432 = 2^4 * 3 * 31 * 727 * 26387 * 31061593 * 76677358507^2 * 603638400611^2
407. 5072490741569379833236188404321771737245196193913534037231683696 = 2^4 * 3 * 31 * 5261 * 191953 * 4819130401 * 12431781671892340831 * 56344700344535995370929[FONT=verdana]
[/FONT][/code][FONT=verdana]
got from 41 to 64 digits, in one iteration... thats a nasty increase
[/FONT]

kar_bon 2010-05-27 20:53

[QUOTE=firejuggler;216383]ok.... then another odditty... even number...
251233597904 : 406

[code]
406. ... = .... * 76677358507^2 * 603638400611^2
[/code]

got from 41 to 64 digits, in one iteration... thats a nasty increase
[/QUOTE]

The error is in those two squares!

Try "Repair sequence" to correct this error!

firejuggler 2010-05-27 20:57

nope, no error...

kar_bon 2010-05-27 20:58

[QUOTE=firejuggler;216386]nope, no error...[/QUOTE]

Sure!

Try yafu with "factor(41038840984846674664033027212414586476432)"!

PS: Error in Factor DB corrected!

firejuggler 2010-05-27 21:00

my bad... i'll shut up for now

kar_bon 2010-05-27 21:05

[QUOTE=firejuggler;216388]my bad... i'll shut up for now[/QUOTE]

No, don't do that!

This was/is an old error in the FactorDB.
I've encountered it long ago when I've clicked fast twice submitting a factor!

So, if you encounter one or more very high factors squared, this is most possible an error in the DB.
It's impossible to increase the digit count for 20 digits in only one index!

firejuggler 2010-06-11 05:10

for sequence 41982
[quote]
1713. 1754218242254465653147056021211792459894243652310030937038892574026057769461755268560858622494825213369560034 = 2 * 3^4 * 4238033 * 93311826317380996076851114473629 * 2859291619491983416103324596494883 * 9576551165825044447667985105024247
[/quote]
c32*c34*c34

kar_bon 2010-06-11 08:59

seq 40224, index 2485

C113= 2 · 3 · 11 · 31 · 21383 ·
105783994359548330628331<24> ·
218424268587768369142127<24> ·
[b]209[/b]103061372832089349546668699<30> ·
[b]209[/b]692532437435221075497769997<30>

so 2 · 3 · 11 · 31 · 21383 · C24 · C24 · C30 · C30 !

@Andi47: I've extended your released seq from today only a few steps!

10metreh 2010-06-11 17:24

Cxx is only used when the number is composite (hence the letter C). Pxx is used for primes.

kar_bon 2010-06-11 17:59

[QUOTE=10metreh;218216]Cxx is only used when the number is composite (hence the letter C). Pxx is used for primes.[/QUOTE]

Oh, sure! Mixed my mind with the post before.

firejuggler 2010-07-03 02:10

49236 : 1226 escape from 2^2*7 driver
[code]
1225. 23106021852034064506348075005575344882282672181376207345881516575833495536941527240972979441301182801592128 = 2^6 * 7 * 348731 * 93605703811 * 1579989851941147933616241995303305010313029578183755731330104094504462284989856904525771
1226. 29295285111073525280362042913549567337679938845799778748716380985742457765405494479034572081352083666831040 = 2^6 * 5 * 13195219 * 27682915399 * 1213334392503329 * 78086396527464139 * 2645229959651534911828470719746566444850716985939363577
and still haven't re-acquired one at 49236:1258
[/code]

10metreh 2010-07-03 18:33

2^6 * 7 isn't the 2^2 * 7 driver. The power of 2 must be 2.

klajok 2010-08-18 17:28

aliquot 12345678, iteration 1199:
[CODE]
c[SUB]129[/SUB] = 2[SUP]7[/SUP] * 3 * 7 * 421 * 3617 * 5407 * 341287 * p[SUB]55[/SUB] * q[SUB]55[/SUB]

p[SUB]55[/SUB] = 5777398822892520031605250147118497503359280555931268443
q[SUB]55[/SUB] = 5939497550687812461130039456311122742858739733882405461

q[SUB]55[/SUB]/p[SUB]55[/SUB] = 1.028[/CODE]

klajok 2010-08-19 22:24

[QUOTE=rodac;195712]I think it's possible to find others 2^8191 escapes...
Take odd multiples of 2^12 * 8191 (who are not already computed) and run them with aliqueit...

I have put the sequence 1576865792 into the DB.

Friday 13, my day of chance... :smile:[/QUOTE]

I found that sequence [URL="http://factordb.com/search.php?se=1&aq=981112475648&action=all&fr=&to="]2^12 * 8191 * 29243[/URL] ends with prime!

firejuggler 2010-09-16 19:20

[code]
Unchecked 145 41 [URL="http://factordb.com/index.php?showid=1100000000215022921"](show)[/URL] [URL="http://factordb.com/index.php?id=1100000000215022921"][COLOR=#002099]42186696535608231075791973348442825570868[/COLOR][/URL]<41> = [URL="http://factordb.com/index.php?id=2"][COLOR=#000000]2^2[/COLOR][/URL] · [URL="http://factordb.com/index.php?id=7"][COLOR=#000000]7[/COLOR][/URL] · [URL="http://factordb.com/index.php?id=1100000000215022923"][COLOR=#550000]1506667733414579681278284762444386627531[/COLOR][/URL]<40> Unchecked
146 41 [URL="http://factordb.com/index.php?showid=1100000000215022924"](show)[/URL] [URL="http://factordb.com/index.php?id=1100000000215022924"][COLOR=#002099]42186696535608231075791973348442825570924[/COLOR][/URL]<41> = [URL="http://factordb.com/index.php?id=2"][COLOR=#000000]2^2[/COLOR][/URL] · [URL="http://factordb.com/index.php?id=7"][COLOR=#000000]7[/COLOR][/URL] · [URL="http://factordb.com/index.php?id=1100000000215022926"][COLOR=#002099]1506667733414579681278284762444386627533[/COLOR][/URL]<40> [/code]

unfortunatly, the later isa composite

kar_bon 2010-09-16 19:28

[QUOTE=firejuggler;229995]unfortunatly, the later isa composite[/QUOTE]

See post #44 in here!

firejuggler 2010-09-26 09:13

sequence 68067066 lost its driver (2^2*7) at 120 digits, iteration 5205
[code]
5201 . 120160024768474595620247199923070728824139821327941626210835721944392241308594410097704009138903194330641209257113114108 = 2^2 * 7 * 47 * 71 * 10422926217593959141423391 * 9769371437580161625182729375590435591 * 12629596792162882137635685367769814090477588135241513
5202 . 128730023538296877237753616844326887725580024227901894636611932487778896195614813847616998259650853519488770566893382148 = 2^2 * 7^2 * 245417 * 2676203500079724306762043762672140115985429053321861562835449095425064864517036805402703550459489764723830954089
5203 . 133328592184146868949100358358514154185399874707947809153540215706531502803481999497002961019069303053029494324359606232 = 2^3 * 7 * 157 * 9433 * 136973 * 320308481 * 39488495936123943911 * 272807337014316250051 * 683845858645065919637 * 4973905319483598385016803304667784357
5204 . 154227886319346773761224261192515143153977935800368412993841853751627513751170416700083015289781782535091776840343195688 = 2^3 * 7 * 19 * 144951020976829674587616786835070623265016856955233470858873922698898039239821820206844939182125735465311820338668417
5205 . 193654564025044445249056027211654352682062520892191917067455560725727780424401951796344838747319982581656591972461007512 = 2^3 * 19 * 23 * 677 * 17573 * 575551 * 1674011 * 10113069931 * 477855517098516812029705340069783803198764784378993870530839212153308739264111417577977

[/code]

Andi47 2010-10-26 17:46

a *VERY* nasty 2*3 driver...
 
1 Attachment(s)
sequence 10212, around iteration [B]1866[/B]:

[CODE]1865. 4004194346750809211584406959518055465254729622710532147437702807011602646533443497097146816242176 = 2^9 * 3^2 * 868965787055297137930643871423189120063960421595167566718251477216059602112292425585318319497
1866. 7552181655297587425755225886538936642475880024083601322348323588484774001957933470762001514761726 = [COLOR="Red"]2 * 3^5[/COLOR] * 181 * 653 * 131475370170299812442417381965288354004446031165034237304833730804957985506615469640452437
1867. 9536799738510859688577267418957325040405912775599169833780042658310998694020583852675238372206562 = [COLOR="Red"]2 * 3^2[/COLOR] * 9461 * 2148254219 * 836320502517083 * 31169849000556021174489137728810779748248396531875194145934420000797
1868. 11128450396804855390621290607480698358277209733957335886359112490443527575075129994219774854664158 = [COLOR="Red"]2 * 3^2[/COLOR] * 26309 * 6683876484174689 * 233586415307691261154398453104260609 * 15051571664004661273271835610401012831659
1869. 12984108608473219657991436653112998883330594212750005136706793516767211862019337680859643377795842 = [COLOR="Red"]2 * 3^2[/COLOR] * 7094346964218259 * 101678050252633364513371982875020936351454784012024144183093886419375002752709891
1870. 15148126709885426899767302614666381385393025374024857032894502238503370313017464593307556234293038 = [COLOR="Red"]2 * 3 [/COLOR]* 12958339 * 14251132883957 * 14840340588973 * 307788766612181 * 9956962605465269 * 300597553988722849526763571214983
1871. 15148129047863213777216242413113405323857961867988256611508621247297333149902207937835293306980562 = [COLOR="Red"]2 * 3[/COLOR] * 13 * 375341 * 25097203234459 * 20616410797376230906530389217392379494366557675142820539211712791351721679441[/CODE]

Now, [B][SIZE="4"]500[/SIZE][/B] iterations later, [I]still[/I] with the [COLOR="Red"]2*3[/COLOR] driver:

[CODE] 2364 . 56819747893850643309658917267245686783858082283563428154129785450618320319043926229193330527170144742756313246053138209489913045758870853344504890 = [COLOR="Red"]2 * 3[/COLOR] * 5 * 25085718003179 * 500808946673730671 * 112287779711074166965625748958429 * 1342600914263986868000157231620559032284198123476376097434420953081937305528302083
2365 . 79547647051396336962896219841930561534651501843995013463676310825661821976878869453032870977233904503387215255183825731253453511301936294106989510 = [COLOR="Red"]2 * 3[/COLOR] * 5 * 419 * 1493 * 19469 * 6111689 * 2587414699691 * 8515868764352137 * 941305638854063903813159611390923070919 * 1717519590834594684556345545402286016381633194810074412195307
2366 . 111960394271731533597327654726303544370916097282573209771237690933850767118060446994040763264643508643235734083438726504180988911473721456953490490 = [COLOR="Red"]2 * 3[/COLOR] * 5 * 40303553066431983076559328846685614063912189885426935847114002539 * 92597621262810440341332893964753544502965443017034032016312812745674846106120697
2367 . 156744551980424147036258716616824962119282536195602493679732767314058102696206980398088857719065948817015216575404880012705578744491179951583759750 = [COLOR="Red"]2 * 3[/COLOR] * 5^3 * 120790682056686281 * 4037952068019416313749044513001 * 8433452215179293784262176182620121 * 50807895908914573472944448939859107841346960985436717870396013
[/CODE]

firejuggler 2010-10-30 10:07

[code]
ecm -c 5 -pp1 1e3
GMP-ECM 6.3-rc4 [configured with GMP 5.0.1] [P+1]
(14^73440-1)/(14^36720+1)/(14^4080-1)/277404711018325241330154405853305031036942
21979279298907472753382096155114966981418193207009080490063602079752655383174559
59263634702566760612363496147770608659293891824829799662112373452289222221733373
46876810447331721561874270986723653679175856465595053924649460523862703923499014
00080165575304943329226955310342065257802289723295150495061847200570819872043546
65216202421094773626288364753414462526341397586313310520273624176296457698144024
79936275647858900266343178339720134594099371804836419204159417095565243232918368
42898552428462697208180758516938536994654691596112140957086030170643010904587706
7722503422028323282531317398941
Input number is (14^73440-1)/(14^36720+1)/(14^4080-1)/27740471101832524133015440
58533050310369422197927929890747275338209615511496698141819320700908049006360207
97526553831745595926363470256676061236349614777060865929389182482979966211237345
22892222217333734687681044733172156187427098672365367917585646559505392464946052
38627039234990140008016557530494332922695531034206525780228972329515049506184720
05708198720435466521620242109477362628836475341446252634139758631331052027362417
62964576981440247993627564785890026634317833972013459409937180483641920415941709
55652432329183684289855242846269720818075851693853699465469159611214095708603017
06430109045877067722503422028323282531317398941 (36778 digits)
Using B1=1000, B2=17248, polynomial x^1, x0=2086595893
Step 1 took 9562ms
********** Factor found in step 1: 212171599413530777359180907258382501485482314
4130986675524080705141177228095075826746767093551534424235792267
Found composite factor of 109 digits: 212171599413530777359180907258382501485482
3144130986675524080705141177228095075826746767093551534424235792267
[/code]
does it qualify as class record?

10metreh 2010-10-30 11:52

[QUOTE=firejuggler;234916]does it qualify as class record?[/QUOTE]

No, because it is composite and it doesn't have a factor large enough to qualify for the top 10 p+1. Also, this shouldn't be in the Aliquot forum.

Batalov 2010-11-06 01:52

[QUOTE=firejuggler;234916][code]
ecm -c 5 -pp1 1e3
...Found composite factor of 109 digits: 212171599413530777359180907258382501485482
3144130986675524080705141177228095075826746767093551534424235792267
[/code]
does it qualify as class record?[/QUOTE]
[URL="http://mersenneforum.org/showpost.php?p=233484&postcount=220"]No[/URL]. :-)

schickel 2010-12-17 10:23

I wonder: is this the nearest miss for an aliquot cycle?[code]442580:i1119 = 427600:i0 = 427600[/code]The difference, 14980, is <3.5%....and I don't remember seeing many merges that come in on the key number of a sequence.

Others:[code]904386:i2699 = 550816:i0 = 550816 is 39%
152262:i1626 = 49600:i0 = 49600 is 67%
991560:i1303 = 728840:i0 = 728840 is 26%[/code]

schickel 2010-12-18 07:50

Funny, I was looking at 2^3 * 3 * 5 for the next project and decided to check one:[code]733152 406. sz 102 2^3 * 3^2 * 5^2[/code]Check it out, straight from this:[code]406 . c102 = 2^3 * 3^2 * 5^2 * 1797812832795835993124281748291483 * 203182251498077097304419385916480297580123731538706456660667332393[/code]to this:[code]407 . c103 = 2^5 * 3^2 * 5 * 7 * 719 * 14653 * 26470891 * c84[/code]Well, I guess that moves it to the [I]next[/I] next project 2^5 * 3 * 7.....

schickel 2010-12-29 16:24

Keeping up the tradition (from 668232):[code]2^2 * 7^2 * 146553153866574900009057791712523449193602008743358906831021084353148331739654716314747248707109693
2 * 7 * 251437 * 721283 * 635575723 * 6901244956164857 * 2671366932032823352152521783151823582553799194895552867541805917
2 * 5 * 7 * 71 * 229 * 5683 * 25012733 * 131352423168408378548756555908565556381537386340519855408543198303482444760870020791
2 * 5 * 7 * 1529903 * 217398692085544360066660632692285774542341162573982183425020710176858825991414544984188323571
2 * 9559426409591203 * 95840777325235308394527175086663563 * 13432007881327541116919380402121939599179772203529
2 * 1217 * 240638602843027818808377535789074887 * 21010540670457951025982923492349504490641117182218464902079041
2 * 1949 * 3463 * 76001 * 102193079 * 1199964767 * 4029480899449282639 * 12167732209019086382522734517687987301344330021243597
2 * 17^2 * 19 * 131671 * 583567603 * 3663788528820390184278915563461092020372386436006106940225844045757877198275346009
2 * 11 * 31 * 1779477327233 * 610489428174029139451187209 * 2826318290607521510430309041278321235306800851332915684189
2 * 11 * 541 * 2342802673613104392329150893034023625512622579 * 51752802997813505153198115299056748667416841875443
2 * 19 * 23 * 47 * 941 * 5839 * 389131129 * 1710484679 * 3966312130129 * 270081343294267 * 5733505315364588720894496941978954293064261
2 * 47 * 227 * 1651787 * 68586209 * 383010923316398239 * 275190964073201203067 * 2479608870995531099555330023606496061305477
2 * 20107 * 79481 * 4063452746849 * 70934706679027062133 * 1306290192001465433381 * 282785451252374313489900659497131547
2 * 293 * 1103309 * 119179606177 * 15459795758247767 * 282389460349629126299675879507 * 505933625329650640546730433533467
2 * 19 * 449 * 90059 * 55947503593440700628173587471312360014155897247847981871591698130142554985253821098610777
2 * 19 * 67 * 17216207 * 8649499055764261693847021918646292699859 * 132078794439592135070469304420493134651978783483
2 * 3319 * 186311 * 399710972721112691 * 61033059188703221877098605852338788701984402459398873812969672498015507
2 * 11 * 157 * 14341 * 13430503 * 404108939328271 * 56164748473023992411567202109873261797679211662951977090422558483597
2 * 5^2 * 625048252889 * 6408838769946668355299599429295877883 * 48767606721010832224101885529607811178922235451
2 * 5 * 743 * 2557 * 32317667 * 17879703883 * 54602861321 * 14013851898064146832004340496482011006068973743226003697332521
2 * 1481 * 14081 * 27901 * 236287 * 1201337 * 20423695112088051360225019652560468930956930456077729535191022397258311571
2 * 26279825463061 * 879763154807992136690172418477 * 73122921244020649822423131161251750671069279575189431
2 * 845301779680056747246757122445141328843383906611692543875751461957778628886014891572668579757321
2^2 * 13 * 29 * 17916469 * 31286574756300371535497066885133595903244545319230918289563251102007949548514968070287[/code]It's 97 digits in the DB with 2^2 * 5 right now, if anyone's interested...

schickel 2011-01-04 08:09

[QUOTE=smh;244419]870408 is done for this project but I'll work it a little longer.[QUOTE=schickel;244443]Nice ride there![/QUOTE][/QUOTE]Man, talk about some luck....look at the driver escapes on this one:[code]2^5 * 3 * 7^2 * 16720135787 * 7360548507954043 * 5129077448592365941381 * 33485337604996422218891 * 1758911342484731366465751281
2^5 * 3 * 5^2 * 7^2 * 283^2 * 1634223586907282197965234305742174758244048133 * 23333147521983428741766746550308821593836024029
2^4 * 3 * 5 * 7 * 13757 * 62129 * 700282418153754583449060809509751926471677854923075376843509744751170443029179053452487671

2^2 * 3^6 * 7^2 * 6887018323840989253297408506535401108144729490678649177252003803
2^3 * 3 * 7 * 59 * 97 * 937 * 297233 * 2234821423121363973579239 * 3374557261890794420966692057661

2^3 * 3^2 * 29 * 2273 * 2637060036151559935343640349918973228172575701710916856231114574860240929
2^6 * 3^2 * 157 * 307 * 617 * 38711 * 564009060284177 * 60334971159429342495518356155350424762320451547229

2 * 3^4 * 339693123644920715437983803087734041290927906296302918982280420184563970704652226050573788233
2^2 * 3 * 433 * 3041888463487 * 5431777288177 * 9887569726849 * 141643432289929454072329123 * 567861504643793418931622537[/code]So there is hope out there for a lot of sequences!

This is the one I really like: 2^5 * 3 * 5^2 * 7^2 * 283^2 -- let's throw an extraneous squared factor in there and escape 2^5 * 3 * 7!

schickel 2011-01-14 18:06

Here are a couple of nice ones from 304590:[code] 2462 . 30140960841984816826962832568140925699144 = 2^3 * 3767620105248102103370354071017615712393
2463 . 26373340736736714723592478497123309986766 = 2 * 31 * 810013 * 33719748607 * 78833738689 * 197553630707
2464 . 14462850174970527556943451127747643956274 = 2 * 7231425087485263778471725563873821978137
2465 . 7231425087485263778471725563873821978140 = 2^2 * 5 * 361571254374263188923586278193691098907[/code]and[code]
2515 . 4570802484054682926254151108993352 = 2^3 * 571350310506835365781768888624169
2516 . 3999452173547847560472382220369198 = 2 * 1423 * 1405288887402616851887695790713
2517 . 2003941953436131630791854197561010 = 2 * 5 * 13 * 41 * 17791 * 65657 * 9691091 * 33212675486141
2518 . 1975652613256786675365576804002126 = 2 * 11 * 19 * 421 * 132423173 * 84778985599020559279
2519 . 1435468632268238209972522590122674 = 2 * 717734316134119104986261295061337
2520 . 717734316134119104986261295061340 = 2^2 * 5 * 61^2 * 79 * 122080684063784253073772413[/code]

schickel 2011-01-22 04:32

All I can say is....
 
1 Attachment(s)
[SIZE="5"]OMG!![/SIZE]

If you need any help with this, let us know....

:party: :party: :party:

[code] 2372 . c164 = 2^3 * 3643 * 210573105529 * 1637298696359 * 4524372432971 * 1324922512882810280489279613245595139932613274649355350306838499328181267164234922312205601317388706765987906189080799222681
2373 . c164 = 2^3 * 6591773131313446548156452460460277667579628005426210805289515348340869867349240770833065713475872946272090464138424975010575114091827888652121452803822875523332977
2374 . c164 = 2 * 379 * 7223392803711043882484924626916759161 * 8427327158675998604545159819262500667078623534136073582373233152369098988022020554146056277433750217488298497800889186865233
2375 . c164 = 2 * 93940813 * 48706534889 * 4175173457705466437170120121 * 608623030638993244370632345293011022612596762301128301201060533177094217472829060321811618890770409403181474384202089
2376 . c164 = 2 * 89^2 * 14709960357635551 * 835398837455262574088453126871401015449 * 59724027880738799388620039576547554627657587436191698087164260890155972445254214268658264310675061503973[/code]This tops Don Leclair's downdriver capture by a full 6 digits....

Now let's hope that 4788 can have this kind of luck.

[SIZE="1"]PS. I hope I'm not letting any cats out of any one's bag.[/SIZE]

Andi47 2011-01-22 05:42

[QUOTE=schickel;248168][SIZE="5"]OMG!![/SIZE]

[code] 2372 . c164 = 2^3 * 3643 * 210573105529 * 1637298696359 * 4524372432971 * 1324922512882810280489279613245595139932613274649355350306838499328181267164234922312205601317388706765987906189080799222681
2373 . c164 = 2^3 * 6591773131313446548156452460460277667579628005426210805289515348340869867349240770833065713475872946272090464138424975010575114091827888652121452803822875523332977
2374 . c164 = 2 * 379 * 7223392803711043882484924626916759161 * 8427327158675998604545159819262500667078623534136073582373233152369098988022020554146056277433750217488298497800889186865233
2375 . c164 = 2 * 93940813 * 48706534889 * 4175173457705466437170120121 * 608623030638993244370632345293011022612596762301128301201060533177094217472829060321811618890770409403181474384202089
2376 . c164 = 2 * 89^2 * 14709960357635551 * 835398837455262574088453126871401015449 * 59724027880738799388620039576547554627657587436191698087164260890155972445254214268658264310675061503973[/code]This tops Don Leclair's downdriver capture by a full 6 digits....

Now let's hope that 4788 can have this kind of luck.

[SIZE="1"]PS. I hope I'm not letting any cats out of any one's bag.[/SIZE][/QUOTE]

nice!!!
:party::party::bow wave::bow wave::party::party:

unconnected 2011-01-22 08:59

Very nice catch! :smile:

Mini-Geek 2011-01-22 12:49

:groupwave:
:toot:

I estimate* that at its current size, it has about a 1 in 250 chance of being lost at any given line. It is not unreasonable to think that this single downdriver run might take it under 120 digits, but what it does from there is anyone's guess.

* log(10)*162/3*2, since a 162 digit number (the cofactor) has about a 1/log(10^162) chance of being prime, and considering that we know it's odd, would have to be p=4n+1 to break it, and that it is not divisible by 3

schickel 2011-07-28 07:30

Here's something that Clifford spotted in 572000. Just before it gained the 2^9 driver, it had these lines:[code]2877 . c83 = 2^8 * 3
2878 . c84 = 2^11 * 3
2879 . c84 = 2^[color="red"]18[/color] * 3
2880 . c84 = 2^[color="red"]26[/color] * 3
2881 . c84 = 2^[color="red"]10[/color] * 3
2882 . c85 = 2^10 * 3
2883 . c85 = 2^10 * 3
2884 . c85 = 2^10 * 3
2885 . c85 = 2^10 * 3[/code]And then it dropped into the 2^9 driver....

schickel 2011-07-28 07:32

[QUOTE=Mini-Geek;248242]:groupwave:
:toot:

I estimate* that at its current size, it has about a 1 in 250 chance of being lost at any given line. It is not unreasonable to think that this single downdriver run might take it under 120 digits, but what it does from there is anyone's guess.

* log(10)*162/3*2, since a 162 digit number (the cofactor) has about a 1/log(10^162) chance of being prime, and considering that we know it's odd, would have to be p=4n+1 to break it, and that it is not divisible by 3[/QUOTE]Pretty good guess....it made it to <80 digits.

firejuggler 2011-08-05 17:51

got lucky
a prp44 found with yafu
245274:i1222 size 110
[code]
08/05/11 16:02:01 v1.28 @ VINCENT-6D2C40D, Starting factorization of 78181236693885365330909640287796184567642018482876315733157508340179991065265593167258521195997191019394103
08/05/11 16:02:01 v1.28 @ VINCENT-6D2C40D, ****************************
08/05/11 16:02:01 v1.28 @ VINCENT-6D2C40D, rho: x^2 + 1, starting 1000 iterations on C107
08/05/11 16:02:01 v1.28 @ VINCENT-6D2C40D, rho: x^2 + 3, starting 1000 iterations on C107
08/05/11 16:02:01 v1.28 @ VINCENT-6D2C40D, rho: x^2 + 2, starting 1000 iterations on C107
08/05/11 16:02:02 v1.28 @ VINCENT-6D2C40D, pp1: starting B1 = 20K, B2 = gmp-ecm default on C107
08/05/11 16:02:02 v1.28 @ VINCENT-6D2C40D, pp1: starting B1 = 20K, B2 = gmp-ecm default on C107
08/05/11 16:02:02 v1.28 @ VINCENT-6D2C40D, pp1: starting B1 = 20K, B2 = gmp-ecm default on C107
08/05/11 16:02:02 v1.28 @ VINCENT-6D2C40D, pm1: starting B1 = 100K, B2 = gmp-ecm default on C107
08/05/11 16:02:03 v1.28 @ VINCENT-6D2C40D, Finished 25 curves using Lenstra ECM method on C107 input, B1 = 2K, B2 = gmp-ecm default
08/05/11 16:02:19 v1.28 @ VINCENT-6D2C40D, Finished 90 curves using Lenstra ECM method on C107 input, B1 = 11K, B2 = gmp-ecm default
08/05/11 16:04:36 v1.28 @ VINCENT-6D2C40D, Finished 200 curves using Lenstra ECM method on C107 input, B1 = 50K, B2 = gmp-ecm default
08/05/11 16:04:36 v1.28 @ VINCENT-6D2C40D, pp1: starting B1 = 1250K, B2 = gmp-ecm default on C107
08/05/11 16:04:40 v1.28 @ VINCENT-6D2C40D, pp1: starting B1 = 1250K, B2 = gmp-ecm default on C107
08/05/11 16:04:43 v1.28 @ VINCENT-6D2C40D, pp1: starting B1 = 1250K, B2 = gmp-ecm default on C107
08/05/11 16:04:46 v1.28 @ VINCENT-6D2C40D, pm1: starting B1 = 2500K, B2 = gmp-ecm default on C107
08/05/11 16:24:32 v1.28 @ VINCENT-6D2C40D, Finished 400 curves using Lenstra ECM method on C107 input, B1 = 250K, B2 = gmp-ecm default
08/05/11 16:24:32 v1.28 @ VINCENT-6D2C40D, pp1: starting B1 = 5M, B2 = gmp-ecm default on C107
08/05/11 16:24:44 v1.28 @ VINCENT-6D2C40D, pp1: starting B1 = 5M, B2 = gmp-ecm default on C107
08/05/11 16:24:56 v1.28 @ VINCENT-6D2C40D, pp1: starting B1 = 5M, B2 = gmp-ecm default on C107
08/05/11 16:25:08 v1.28 @ VINCENT-6D2C40D, pm1: starting B1 = 10M, B2 = gmp-ecm default on C107
08/05/11 16:41:37 v1.28 @ VINCENT-6D2C40D, prp44 = 15651166559449275276764540716507947337534667 (curve 81 stg1 B1=1000000 sigma=2686719953 thread=0)
08/05/11 16:41:37 v1.28 @ VINCENT-6D2C40D, Finished 81 curves using Lenstra ECM method on C107 input, B1 = 1M, B2 = gmp-ecm default
08/05/11 16:41:37 v1.28 @ VINCENT-6D2C40D, prp64 = 4995233831096380850223128517813373558138438030426436593379546309
[/code]

Andi47 2011-08-08 12:02

Probably not a class record, but a slight oddity anyway:

cubed 17 from sequence 707778:
[CODE] 364 . 255653123697304302243363412673753637703454327171239526645371085269112317458830803591404592585780489907329608741810529159671596 = 2^2 * 571019 * 514251866999292336461005894958749466183 * 217653009213047789835986501624128634445568904039771484583748562932407773722703287
365 . 191740626272242647450533651756137318382057955064085220424299764898788727145525129055537371220448892549203567804095256995171284 = 2^2 * 17^3 * 227 * 311 * 867163639 * 751835833253 * 18938402852121661721520803604040220375038441 * 11193185711105712848962334297550957318004265592981763
366 . 167494771892717867909559876141639561741512508560957464175713477762568196977614058147982532132931521866395148956045920908751916 = 2^2 * 14778548209 * 342934996917466647697 * 148499863951507226937841 * 55638015138463802410933104091179522135221026230371726689056007149395003[/CODE]

schickel 2011-11-19 00:20

Some trivial dribbling
 
Here are the longest/shortest/highest/lowest:

Shortest (=400 lines):[code] 49458 400. sz 118 2^3 * 3 * 5^2 * 7
491490 400. sz 119 2^8 * 3 * 367 * 1223
322344 400. sz 120 2^3 * 3 * 5 * 31 * 3291163
911484 400. sz 123 2^2 * 3 * 73331
178710 400. sz 123 2^5 * 3 * 7 * 17 * 19 * 73 * 541
546660 400. sz 124 2^3 * 3 * 5 * 11 * 13^2
151680 400. sz 125 2^3 * 3 * 5^3 * 578547653
689652 400. sz 126 2^3 * 3
929406 400. sz 130 2^3 * 3 * 5 * 89 * 127 * 331 * 509 * 1543
330084 400. sz 134 2 * 3^3 * 41 * 97 * 895231
78288 400. sz 135 2^3 * 3 * 5 * 17
457326 400. sz 142 2^3 * 3 * 5 * 7
949080 400. sz 147 2^3 * 3 * 5 * 43 * 186411589992350421893[/code]Longest (>7000 lines):[code]283752 7009. sz 159 2^3 * 3 * 331 * 53120107732317517
144984 7062. sz 150 2^5 * 3 * 7 * 37^2 * 83 * 109 * 655002391
1578 7300. sz 142 2 * 3 * 19 * 179 * 3331
392430 7362. sz 148 2^2 * 7
955296 7776. sz 149 2^2 * 7
842592 8003. sz 172 2^3 * 3 * 5 * 13 * 587 * 823 * 1627
195528 8017. sz 144 2 * 3^4 * 24110979082363
552150 8197. sz 147 2^2 * 3 * 7^2 * 17 * 953 * 16493
453798 8565. sz 148 2^2 * 7
933436 12378. sz 160 2^2 * 5 * 7 * 29[/code]Smallest (<110 digits):[code]532656 3129. sz 99 2^2 * 7
237060 2025. sz 105 2 * 3
904960 3210. sz 106 2 * 3^2
761040 1025. sz 107 2^4 * 3 * 5
860952 1042. sz 107 2^4 * 3^3 * 5 * 37 * 142867 * 5357039
540560 1997. sz 108 2^3 * 3 * 13
910032 729. sz 108 2^4 * 22123
804126 907. sz 108 2^5 * 10781 * 28099
615020 644. sz 109 2^2 * 3^2 * 7 * 11 * 3769
878376 2479. sz 109 2^4 * 3[/code]Largest (>170 digits):[code] 19560 486. sz 170 2^3 * 3 * 5 * 7 * 59 * 4520183
842592 8003. sz 172 2^3 * 3 * 5 * 13 * 587 * 823 * 1627
564 3373. sz 175 2^2 * 3^2 * 7 * 13 * 71 * 4292236942619
2340 693. sz 176 2^3 * 3^2 * 5 * 13 * 67
3270 645. sz 177 2^5 * 3 * 7 * 73
966 893. sz 178 2^2 * 3^2 * 5 * 83 * 2099
162126 4283. sz 178 2^3 * 3 * 5 * 461
552 1057. sz 179 2^2 * 3 * 71 * 145633
8352 1737. sz 180 2^2 * 3 * 7^2 * 37 * 4597 * 10841336113
660 890. sz 181 2^3 * 3^2 * 5[/code]Highest powers of 2:[code]701220 992. sz 114 2^10 * 3 * 11 * 23
676080 610. sz 113 2^10 * 3 * 13 * 101 * 1153
589212 1036. sz 118 2^10 * 3 * 23 * 337
947208 1646. sz 119 2^10 * 3 * 23 * 911 * 11597
732000 1484. sz 114 2^10 * 3 * 37 * 599
414480 507. sz 114 2^10 * 3 * 61
140742 606. sz 113 2^10 * 3 * 97 * 151
552876 2040. sz 123 2^10 * 3^2 * 5^2 * 13 * 2377097
531024 2620. sz 115 2^10 * 3^3 * 11^2
622830 871. sz 116 2^10 * 3^3 * 7
979200 2666. sz 114 2^11 * 3 * 23 * 41
820728 857. sz 114 2^11 * 3 * 5 * 11
289788 606. sz 115 2^11 * 3^2 * 257657
383760 1245. sz 119 2^13 * 3^2[/code]Other trivial bits:

Number of:
Sequences <500 lines: 464
Sequences at 110 digits with 2 * 3: 103
Sequences at 110 digits with 2 * 3^2: 54
Sequences with 2 * 3 (any form): 1419

schickel 2011-11-19 16:47

Here's a funny one. I saw this in my last status file:[code]834312 1307. sz 116 2^4 * 3^2 * 31^2[/code]This was the only 2^4 * 31 that was worth looking at. I put the c111 up for some ECM work and just got the factors returned (p39 * p72).

When I uploaded the factor, it did actually escape, but this is what happened:[code] 1308 . c116 = 2^3 * 3^2 * 31[/code]But then the next couple of lines were very interesting (from the line I pulled on):[code]c116 = 2^4 * 3^2 * 31^2
c116 = 2^3 * 3^2 * 31
c117 = 2^3 * 3^2 * p115
c117 = 2^2 * 3 * 569[/code]So I guess it does pay to check at least a few lines beyond where a driver takes over....

Batalov 2012-01-14 19:25

Don't know if this was calculated before.
So, anyway, here are the open sequences with most downdriver runs:
[CODE]453798 67
933436 57
552150 55
955296 54
858180 52
392430 51
144984 48
195528 48
250824 48
236754 46
859974 46
577176 45
617508 44
10528 43
500010 43
532488 43
59232 43
34908 42
728910 42
76686 42
892440 42
154560 41
[/CODE]
532 open sequences didn't have a downdriver, 850 had one, 912 had two.

Batalov 2012-01-14 21:38

P.S. 858180 is actually finished (but the number of d-runs is 52). Some merging sequences may have even more d-runs.

LaurV 2012-01-16 03:58

[QUOTE=Batalov;286301]Don't know if this was calculated before.
[/QUOTE]
Wow! That is nice! I like [URL="http://factorization.ath.cx/aliquot.php?type=1&aq=453798"]that graphic[/URL]!

schickel 2012-01-16 04:27

[QUOTE=Batalov;286301]Don't know if this was calculated before.
[/QUOTE]I had not seen that anywhere. Very interesting stats.....

schickel 2012-01-22 04:57

1 Attachment(s)
Wow, unconnected is having a tremendous run with 11040. The downdriver was captured at i6488 at a size of 152 digits. Right now it's down to 115 digits and is at i6662, so it's been 175 lines and 37 digits so far!

Here's hoping it goes a lot lower.....

science_man_88 2012-01-22 12:35

[QUOTE=schickel;286922]Wow, unconnected is having a tremendous run with 11040. The downdriver was captured at i6488 at a size of 152 digits. Right now it's down to 115 digits and is at i6662, so it's been 175 lines and 37 digits so far!

Here's hoping it goes a lot lower.....[/QUOTE]

just looked it up it's now down to C106 with a C90 cofactor. at i6704

LaurV 2012-01-23 05:18

I saw the beauty went as low as 20 digits and it almost reached ten thousands terms!! Nice-nice. Is that a record of highest digitlength when catching a downdriver?

schickel 2012-01-23 07:03

1 Attachment(s)
I hope I didn't jinx it by talking about it....[QUOTE=LaurV;287007]I saw the beauty went as low as 20 digits and it almost reached ten thousands terms!! Nice-nice. Is that a record of highest digit length when catching a downdriver?[/QUOTE]Actually, it's in fourth place. If you read starting from [URL="http://www.mersenneforum.org/showthread.php?p=256630#post256630"]here[/URL] and go through #1147, you'll see that we've set the bar pretty high. The top spots are occupied by 4788 at 175-digits, 1134 at 164-digits, 3906 at 158-digits, and 11040 at 152-digits.

And on another note....here's a blast from the past from May '09:[QUOTE=mklasson;172844]Ooh, this morning greeted me with a new downdriver record. [url=http://factorization.ath.cx/search.php?aq=139314&action=last&fr=&to=]139314[/url]'s downdriver run started with a c131 at index 1724 and ended with a c23 at index 2288 for a total length of 565 lines and a reduction of 108 digits! :toot: Scary [url=http://factorization.ath.cx/aliquot.php?aq=139314]fall[/url], isn't it?[/QUOTE]That was indeed a record, but guess what. Records are made to be broken, and we have a new #1!

The downdriver for 11040 ran from i6488, 152-digits to i7087, 25-digits, or [B][COLOR="Red"]600 lines[/COLOR][/B] and [B][COLOR="red"]127-digits[/COLOR][/B]! In fact, this puts the record for 1578 listed on Wolfgang's page to shame.

Great work, unconnected!

LaurV 2012-01-23 07:53

[QUOTE=schickel;287015] The top spots are occupied by 4788 at 175-digits, 1134 at 164-digits, 3906 at 158-digits, and 11040 at 152-digits.
[/QUOTE]
Is there any place where all these records are noted? (beside of schickel's copybook :D). If not, we should make a thread with "Aliquot records". That would be pretty interesting for guys like me, and quite motivating for [strike]newbies[/strike] everyone else (at least, is more fun to try breaking aliquot records than splitting aliquot terms, isn't it? :P)

schickel 2012-01-23 08:29

[QUOTE=LaurV;287021]Is there any place where all these records are noted? (beside of schickel's copybook :D). If not, we should make a thread with "Aliquot records". That would be pretty interesting for guys like me, and quite motivating for [strike]newbies[/strike] everyone else (at least, is more fun to try breaking aliquot records than splitting aliquot terms, isn't it? :P)[/QUOTE]The premiere place (at least according to Wikipedia!) is Wolfgang's [URL="http://www.aliquot.de/aliquote.htm"]page[/URL]; another place is Clifford's [URL="http://www.lafn.org/~ax810/aliquot.htm"]site[/URL] (which has fallen out of sync by >1 year, unfortunately).

Other than that, what gets posted here is what we notice, either as we're working it, or afterward upon review.... Unfortunately, as far as downdriver captures go, as I said, we've set the bar pretty high. Most everyone will not be able to go up to 175 digits.....

So, in that spirit, here are some current records:

Longest sequences (>8000):[code]842592 8003. sz 172 2^3 * 3 * 5 * 13 * 587 * 823 * 1627
195528 8017. sz 144 2 * 3^4 * 24110979082363
552150 8197. sz 147 2^2 * 3 * 7^2 * 17 * 953 * 16493
453798 8565. sz 148 2^2 * 7
11040 9020. sz 109 2^4 * 431 * 2527823
933436 12392. sz 161 2^2 * 7 * 13[/code]The shortest ones are at 400 lines...)

Largest sequences (>= 170 digits):[code] 276 1720. sz 170 2 * 3^3 * 5^2 * 17 * 17863
19560 486. sz 170 2^3 * 3 * 5 * 7 * 59 * 4520183
5748 1470. sz 172 2^2 * 7 * 13
842592 8003. sz 172 2^3 * 3 * 5 * 13 * 587 * 823 * 1627
564 3373. sz 175 2^2 * 3^2 * 7 * 13 * 71 * 4292236942619
2340 696. sz 177 2^3 * 3^2 * 5 * 13 * 107 * 142501 * 31734053699405310179
3270 647. sz 177 2^5 * 3 * 7 * 31 * 3739 * 497867 * 1045129066769
966 893. sz 178 2^2 * 3^2 * 5 * 83 * 2099
162126 4283. sz 178 2^3 * 3 * 5 * 461
552 1057. sz 179 2^2 * 3 * 71 * 145633
8352 1739. sz 181 2^2 * 3 * 7 * 53 * 2101111 * 38938746337737993077599
660 895. sz 183 2^3 * 3^2 * 5 * 3163 * 14159 * 32070039222359 * 81741146396847353333[/code]The smallest are 110 digits, except during downdriver runs.

The highest powers of 2 (>=10):[code]947208 1648. sz 120 2^10 * 3 * 11 * 23 * 433
589212 1036. sz 118 2^10 * 3 * 23 * 337
536904 1775. sz 124 2^10 * 3 * 5^2 * 389 * 28541
552876 2040. sz 123 2^10 * 3^2 * 5^2 * 13 * 2377097
622830 871. sz 116 2^10 * 3^3 * 7
715620 773. sz 120 2^12 * 3 * 13 * 769
583800 449. sz 119 2^12 * 3 * 7 * 673
116712 1585. sz 117 2^12 * 3^2[/code]

Greebley 2012-03-21 02:19

There is only one merge (so far) that can't be found if you check using a UInt (up to 2^32). 237552 merging with 70740 has a value of about 4.7 * 10^9 which is a bit over.

I tried to save space by using a uint32 for my hash table rather than a ULongLong and found I missed this one merge when I did so.

schickel 2012-03-22 07:24

[QUOTE=Greebley;293652]There is only one merge (so far) that can't be found if you check using a UInt (up to 2^32). 237552 merging with 70740 has a value of about 4.7 * 10^9 which is a bit over.

I tried to save space by using a uint32 for my hash table rather than a ULongLong and found I missed this one merge when I did so.[/QUOTE]IIRC, that should be the biggest size you have to worry about. There was one merge last year that required updating the UB merge program from Clifford's site from 8 or 9 digits to 10 digits to properly identify....I'll have to dig back through my email archives to recall which one.

schickel 2012-03-29 04:42

Oooh, so close and yet so far!
 
Check out this factorization from 660:[code] 894 . 65051760592868542076211649810607577485597730105437293588816311361066076233410142765489920117370807000836308186259069153189865018491113647173837923678665633360181424192261587457433560 = 2^3 * 3^2 * 5 * 180699334980190394656143471696132159682215916959548037746711976002961322870583729904138666992696686113434189406275192092194069495808649019927327565774071203778281733867393298492871[/code]Missed escaping the driver by [i]that[/i] much.....

Batalov 2012-03-29 04:50

Watch [I][B]In weiter Ferne, so nah! [/B][/I]and feel better.

Dubslow 2012-03-29 04:58

What's the highest/largest termination prime (or cycle)?

Andi47 2012-03-29 08:19

what is needed to escape the 2³*3²*5 driver?

kar_bon 2012-03-29 08:56

[QUOTE=Dubslow;294613]What's the highest/largest termination prime (or cycle)?[/QUOTE]

Highest primes:

4737865361 for 891210 (others: 1034502, 1287222, 1310982, 1330170 upto seq=1.42M)

870451093 for 54880 (80460, 90596, 90844, 96320, 99836 and 276 other seqs<1,42M)

438452624 only for 891144 (cylce) (all<1,42M)

301691801 for 124830 (143442, 191802, 221478 and 22 other seqs<1,42M)

schickel 2012-03-29 10:13

[QUOTE=kar_bon;294624]Highest primes:[/QUOTE]Thanks for havbing that info on tap; I don't have that kind of thing handy..... (I spend too much time concentrating on my personal sequences and not enough time tabulating data.)

LaurV 2012-03-29 10:31

[QUOTE=Andi47;294623]what is needed to escape the 2³*3²*5 driver?[/QUOTE]
One (many) 3(s) and one (many) 5(s) come and go. The stable form 2^3*3*5 is very difficult to get rid of, and you need to square both 3 and 5 and all the other remaining primes be 1 mod 4. See for example sequences I reserved:

612960 (1352: C120=2^3*3^2*5^2*C117)
696204 (1055: C117=2^3*3^2*5^2*C114)
773070 (696: C117=2^3*3^2*5^2*C114)
982290 (500: C117=2^3*3^2*5^2*C114)

These all had fifty-fifty chance to get rid of the driver, depends how the big composite splits.

From the same series, but which I worked out (they were 13 of them, plus two from before) see [URL="http://www.mersenneforum.org/showpost.php?p=283296&postcount=114"]this post[/URL] and [URL="http://www.mersenneforum.org/showthread.php?t=16339"]this discussion[/URL]. Some of them re-gained the driver later, and others got a "stranger" driver too (like 996666 now has 2^3*3^3*7^3 hehe, but I hope can't be stable!). I still work all of them, but the progress is slow, some got into 140-150 digits (996666 is at 153 digits).

schickel 2012-03-29 10:31

[QUOTE=Andi47;294623]what is needed to escape the 2³*3²*5 driver?[/QUOTE]The "2s count" of the odd factors that are not raised to an even power have to be less than or equal to the power of the 2 in the guide/driver. (The 2s count is the sum of all the powers of 2 in the [tex]\sigma[/tex]'s of the prime factors raised to odd powers.)

For that particular line in 660, the 2s count worked out this way:[code][TEX] \sigma(5)[/tex] = 6 = 2 * 3

[tex]\sigma(p_{180})[/tex] = p[sub]180[/sub]+1 = 2^3 * 3^3 * 1503120050756422719425867 * c[sub]153[/sub][/code]So the 2s count was 4, rather than the 3 or less that would have escaped the driver. (Check out Clifford's analysis [URL="http://web.archive.org/web/20110606154446/http://www.lafn.org/~ax810/analysis.htm"]page[/URL]; he covers this along with the forms and number of primes that will allow escape under a particular driver class.....)

schickel 2012-03-29 10:39

[QUOTE=LaurV;294630]One (many) 3(s) and one (many) 5(s) come and go. The stable form 2^3*3*5 is very difficult to get rid of, and you need to square both 3 and 5 and all the other remaining primes be 1 mod 4. [/QUOTE]You beat me to it......

The particularly painful thing about 660 is that it's been [tex]2^3 * 3^n * 5[/tex] (n>1), for the last 100+ lines ever since it mutated from 2^2 resulting in rapid growth......very punishing.

There have been a couple lines with one large prime, and several with two large primes, each one a missed opportunity for an escape.....

fivemack 2012-04-01 19:52

I don't think I've seen the power of three changing on its own in a 2^3*3*5: you gain an extra power of five with probability about 0.1, and then that takes you into regions where I don't have enough results for valid statistics.

wblipp 2012-04-01 22:00

[QUOTE=fivemack;295097]I don't think I've seen the power of three changing on its own in a 2^3*3*5: you gain an extra power of five with probability about 0.1, and then that takes you into regions where I don't have enough results for valid statistics.[/QUOTE]

The power of 3 is locked in because 3 divides both sigma(2^3) and sigma(5). Hence sigma(N) is divisible by 3^2, so sigma(N)-N cannot be divisible by 9 and must be divisible by 3.

schickel 2012-04-04 12:14

From the [B]Sequence 4198862272[/B] [URL="http://www.mersenneforum.org/showthread.php?t=16686"]thread[/URL]:[QUOTE=Dubslow;295308]What's most interesting is that the last two lines are remarkably close to each other. They share their 9 most significant decimal digits, out of 111. Amazing.[/QUOTE]Check out this one from 115302:[code] 5739 . [COLOR="green"]210159170186543807402130496448707321995047687518817483929499313824564782374469744414926622235086584724218693025777672423464955014123[/COLOR][COLOR="red"]73312[/COLOR] = 2^6 * 127 * 2585619711940745661935660635441773154466630013764978886927895101188050964252826579908053915293880225445603998840768607572157418972979
5740 . [COLOR="Green"]210159170186543807402130496448707321995047687518817483929499313824564782374469744414926622235086584724218693025777672423464955014123[/COLOR][COLOR="Red"]89568[/COLOR] = 2^6 * 3 * 11 * 17 * 31 * 43 * 127 * 5003 * 73351 * 8480703709229 * 68676993431861 * 4954503616230797 * 3265064635701896530922147445026759879224471960083055290263685860293080171353[/code]

Dubslow 2012-04-04 15:39

[QUOTE=schickel;295380]From the [B]Sequence 4198862272[/B] [URL="http://www.mersenneforum.org/showthread.php?t=16686"]thread[/URL]:Check out this one from 115302:[code] 5739 . [COLOR="green"]210159170186543807402130496448707321995047687518817483929499313824564782374469744414926622235086584724218693025777672423464955014123[/COLOR][COLOR="red"]73312[/COLOR] = 2^6 * 127 * 2585619711940745661935660635441773154466630013764978886927895101188050964252826579908053915293880225445603998840768607572157418972979
5740 . [COLOR="Green"]210159170186543807402130496448707321995047687518817483929499313824564782374469744414926622235086584724218693025777672423464955014123[/COLOR][COLOR="Red"]89568[/COLOR] = 2^6 * 3 * 11 * 17 * 31 * 43 * 127 * 5003 * 73351 * 8480703709229 * 68676993431861 * 4954503616230797 * 3265064635701896530922147445026759879224471960083055290263685860293080171353[/code][/QUOTE]
I am sufficiently impressed by both the closeness and the timing, though of course as has been pointed out to me the driver is a perfect number, which is more prone to these sorts of things.

schickel 2012-04-20 03:54

In light of a comment made over [URL="http://www.mersenneforum.org/showpost.php?p=296875&postcount=307"]there[/URL], I find this interesting; here are the sequences that are >160 digits that are not driver controlled:[code] 9120 894. sz 161 2^4 * 3 * 5^4 * 23^2 * 31123
103920 5696. sz 161 2^5 * 3 * 29 * 605707
9282 1084. sz 162 2^2 * 149
1992 1310. sz 163 2^2 * 3 * 5^2
1920 2403. sz 164 2^2 * 1571
1560 1850. sz 164 2^6 * 3
3366 1993. sz 167 2^3 * 104537 * 1394977 * 815722357616320763561
8040 2422. sz 168 2^2 * 3 * 5 * 867797441891
5250 1915. sz 168 2^2 * 3^3 * 10567
363270 1759. sz 168 2^6 * 23
1074 1974. sz 168 2^6 * 3^2 * 13
9588 2053. sz 168 2^7 * 3^2 * 2718223 * 1045564873 * 42256198889
966 893. sz 178 2^2 * 3^2 * 5 * 83 * 2099
552 1057. sz 179 2^2 * 3 * 71 * 145633[/code]That's 14/46 or 30% of the sequences larger than 160.

It also looks like fivemack is poised for a big milestone here:[code] 8352 1753. sz 184 2^2 * 7 * 877 * 23290367831 * 771793747573[/code]So 3-4 more lines until it hits 185 digits....though Paul Zimmermann is nipping at his heels with 660:[code] 660 895. sz 183 2^3 * 3^2 * 5 * 3163 * 14159 * 32070039222359 * 81741146396847353333[/code][COLOR="White"]And the NFS is going to be way easier with "just" a c139....[/COLOR]

Dubslow 2012-04-20 04:09

363270 isn't up to date in the FDB, but it's also not listed in the reservations thread. (I haven't checked any others.)
[url]http://factordb.com/sequences.php?se=1&aq=363270&action=last20&fr=0&to=100[/url]

schickel 2012-04-20 04:24

[QUOTE=Dubslow;296885]363270 isn't up to date in the FDB, but it's also not listed in the reservations thread. (I haven't checked any others.)
[url]http://factordb.com/sequences.php?se=1&aq=363270&action=last20&fr=0&to=100[/url][/QUOTE]You're right. 363270 is one of the damaged sequences in the DB. I have a "true" .elf stored locally, which is where I got the current status from. If you search using [URL="http://factordb.com/sequences.php?se=1&aq=11500266366270041304&action=last20&fr=0&to=100"]11500266366270041304[/URL] as the start point, you can see the shape after the damaged line in the DB....

I also kind of cheated on this one: I removed my reservation from the reservation thread to shave a little bit of space off the reservation post, figuring that a poacher is probably not going to be interested in tackling a sequence this high. (Assuming, that is, that they even realized that 363270 was damaged.) (I'm also ~4 days away from finishing an NFS job on the c153....)

I think that that is the only one that high in the rankings that is damaged....

Dubslow 2012-04-20 04:41

[QUOTE=schickel;296888]363270 is one of the damaged sequences in the DB.<snip>
I think that that is the only one that high in the rankings that is damaged....[/QUOTE]
Does anybody know if/when this will be fixed?

schickel 2012-04-20 05:05

[QUOTE=Dubslow;296890]Does anybody know if/when this will be fixed?[/QUOTE]Nope, the only one that knows is Syd. Looking at his [URL="http://www.mersenneforum.org/member.php?u=8739"]stats[/URL], he hasn't been on since Tuesday.....

Dubslow 2012-04-20 05:10

[QUOTE=schickel;296892]Nope, the only one that knows is Syd. Looking at his [URL="http://www.mersenneforum.org/member.php?u=8739"]stats[/URL], he hasn't been on since Tuesday.....[/QUOTE]

You mean last month? It said March in my screen :P

schickel 2012-04-20 05:18

[QUOTE=Dubslow;296893]You mean last month? It said March in my screen :P[/QUOTE]:blush: You're right, I forgot that this is April.....

I would be forced to assume that he's got obligations that take precedence over the DB.

LaurV 2012-04-20 05:20

[QUOTE=schickel;296888]
I also kind of cheated on this one: I removed my reservation from the reservation thread to shave a little bit of space off the reservation post, figuring that a poacher is probably not going to be interested in tackling a sequence this high. (Assuming, that is, that they even realized that 363270 was damaged.) (I'm also ~4 days away from finishing an NFS job on the c153....)
[/QUOTE]
That is interesting, I was thinking exactly in the same way when I unreserved 585000, nobody would be interested in poaching a C141. In fact I still kept it in the list, but never did anymore work on it, as other were always "more important" (996666, 225900, 618480, etc) than the "unreserved" one...

LaurV 2012-04-20 05:28

[QUOTE=schickel;296894]
I would be forced to assume that he's got obligations that take precedence over the DB.[/QUOTE]
It won't hurt anybody if he shares the responsibilities. He could pick one or some trustful people from here and give them the right rights to do this kind of "corrections". I could volunteer, but I assume that I am not in the "trusted" group yet :smile:. But he could pick schickel, Batalov, bchaffin, etc (people who anyhow maintain their own aliquot DB and have a lot more experience, and know to tell left from right related to aliquots, and they proved themselves here over the time). Of course, I assume they too would agree to share the responsibility.

Dubslow 2012-04-20 05:45

[QUOTE=schickel;296894]
I would be forced to assume that he's got obligations that take precedence over the DB.[/QUOTE]

Does he even know that there are errors in the database?

Perhaps it would help speed up the process if we could compile a list of links to each number which is stored incorrectly, as well as what sequence and line that number occurs at to make flushing the succeeding lines easier (if it doesn't happen automatically).

For example:
[code]
75402, i2051: http://factordb.com/index.php?id=534062867052540827
If you refresh it enough times, it will occasionally appear as FF without any factors listed. Line 2502 needs to be recalculated, after this number is fixed.[/code]

schickel 2012-04-20 06:43

[QUOTE=Dubslow;296899]Does he even know that there are errors in the database?[/quote]I reported [URL="http://www.mersenneforum.org/showpost.php?p=290546&postcount=1367"]some[/URL] in mid-February that had errors. I assume he probably saw that post.[quote]Perhaps it would help speed up the process if we could compile a list of links to each number which is stored incorrectly, as well as what sequence and line that number occurs at to make flushing the succeeding lines easier (if it doesn't happen automatically).[/quote]I think there is some metadata stored for sequences (there's a post in the FactorDB [URL="http://www.mersenneforum.org/showthread.php?t=11119"]thread[/URL] somewhere where he talked about dropping an index and rebuilding it to fix sequence errors), something like that would take care of us. Below that, I think he has a script to check the full integrity of each number and its factorization, but I don't know how long it takes to run and whether or not it requires exclusive access or not.[quote]For example:
[code]
75402, i2051: http://factordb.com/index.php?id=534062867052540827
If you refresh it enough times, it will occasionally appear as FF without any factors listed. Line 2502 needs to be recalculated, after this number is fixed.[/code][/QUOTE]I thought about starting a reporting thread in the FactorDB forum, but didn't.....

Greebley 2012-04-27 14:36

I thought the following was fairly interesting. 3 very close values due to a fairly large twin prime and the smallest perfect number.

Its from 1278480

[CODE]639 . 799858816619302473118275277197659899244830242353880362391892241816431088334 = 2 * 3 * 133309802769883745519712546199609983207471707058980060398648706969405181389
640 . 799858816619302473118275277197659899244830242353880362391892241816431088346 = 2 * 3 * 133309802769883745519712546199609983207471707058980060398648706969405181391
641 . 799858816619302473118275277197659899244830242353880362391892241816431088358 = 2 * 3^4 * 761 * 22484149900539495426601355003279 * 288560706695245341536872445882282707061
[/CODE]

firejuggler 2012-05-03 15:31

my intent was to prove a prp...
[code]
ecm -c 0 -I 3 -pm1 1e6
GMP-ECM 6.4.2 [configured with MPIR 2.5.1] [P-1]
((10^10261*17-53)/117-1)/6786181321342109281057159754389466902690195104791235362
81023370974655782538755407244697801814863543444869917694106309498851317761583170
68103321824866326322285987965460176946277035301962791203854117391535953963443676
17891944265398744331006625410
Input number is ((10^10261*17-53)/117-1)/678618132134210928105715975438946690269
01951047912353628102337097465578253875540724469780181486354344486991769410630949
88513177615831706810332182486632632228598796546017694627703530196279120385411739
153595396344367617891944265398744331006625410 (10017 digits)
Using B1=1000000, B2=1886622346, polynomial x^1, x0=1658312913
Step 1 took 258571ms
********** Factor found in step 1: 736183775266768523893900375053395802969185549
51655966849831359960431422235080541496408420471541729971200601733084494089627298
49378437198833676462908885696598898164282261456345843479014392667128462193581071
407176013873331705151383870773153395169197737
Found composite factor of 250 digits: 736183775266768523893900375053395802969185
54951655966849831359960431422235080541496408420471541729971200601733084494089627
29849378437198833676462908885696598898164282261456345843479014392667128462193581
071407176013873331705151383870773153395169197737
Composite cofactor (((10^10261*17-53)/117-1)/67861813213421092810571597543894669
02690195104791235362810233709746557825387554072446978018148635434448699176941063
09498851317761583170681033218248663263222859879654601769462770353019627912038541
1739153595396344367617891944265398744331006625410)/73618377526676852389390037505
33958029691855495165596684983135996043142223508054149640842047154172997120060173
30844940896272984937843719883367646290888569659889816428226145634584347901439266
7128462193581071407176013873331705151383870773153395169197737 has 9767 digits
[/code]

Batalov 2012-05-03 20:56

1. What does it have to do with aliquots?
2. 10260 = 2 * 2 * 3 * 3 * 3 * 5 * 19, so of course (10^10260-1) has zillions of small factors. It is [URL="http://hpcgi2.nifty.com/m_kamada/f/tm.cgi?p=103"]35.20% factored[/URL], so proof is very easy

schickel 2012-05-14 05:54

1 Attachment(s)
Well, since we pushed 4788 over 3600 lines, that means that 314718 is now at 11,000_ lines....only the second sequence to achive that mark!

schickel 2012-08-17 09:07

1 Attachment(s)
Wow! Just noticed this one from fivemack: reserved way back a year ago, [URL="http://www.mersenneforum.org/showthread.php?p=265859&highlight=119472#post265859"]119472[/URL] will serve as an inspiration to LaurV:[code] 380 . 654702352433694915020223628642043797670553520375330529218431265284942258850788966224056062658369740959788317261748860966077034120 = 2^3 * 3^2 * 5 * 357900440399204822434551219282872874284233697 * 5081350678475424188901179711470674268623940177115332661993165354633542489261829461
381 . 1473080292975813558795503164444598544758745426789673984557716647905500344834964068712879663473340773939952105321140912522567222800 = 2^4 * 3^2 * 5^2 * 52241115139331 * 432682209368494736440069736227561325042261 * 18102661942937583150461608299215040466766794766017755199741200190181503[/code]That's 340 lines and 119 digits straight up(!).....

Batalov 2012-11-16 05:07

Interesting... ([URL="http://factordb.com/sequences.php?se=1&aq=701694&action=range&fr=1368&to=1369"]701694[/URL])
[CODE]1368 . 2635632963...60<120> = 2^6 * 5 * 127^2 * ...[/CODE]
Let's see if it will get lucky... [COLOR=green]NO! One factor packed a 2^5 in it![/COLOR]


All times are UTC. The time now is 11:44.

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.