![]() |
Dodecaproth Reservation Thread
How it works.
Find an n value where no Dodecaproth has been found, and check the posts below to ensure that noone else has reserved it. Post in this thread to say you are reserving that n. If a previous kmax is provided then start your search from that point. If not you must start from 1. Ensure you check the entire range from kmin to kmax, don't just stop if the program finds one dodecaproth. When you have finished with your range make another post here with the following information: n_value (kmax) forum_name dodecaproths_found Post results here or you can email the file to [email]octoproth@greenbank.org[/email] This thread will be maintained and updated by the moderators. There should be enough space here to list both the results and status of ranges. If it grows too large I'll split it as before. Complete ranges checked up to, and including, n=55. First n free: n=63 k,n values:- 7946515823715 44 9604223498415 44 10872870991605 44 Robert [Done] 45 None [Done] 46 None [Done] 45960089776965 47 69283546229205 47 Robert [Done] 48 None [Done] 19000157002995 49 374180855930805 49 502414540060965 49 555428994253665 49 Robert [Done] 717083008036395 50 Greenbank [Done] - [B]Previously missed![/B] 145174433549145 51 246834311745945 51 868049887559295 51 Kosmaj [Done] 2808528662035845 52 R.Gerbicz [Done] 243175720207035 53 2045619551693025 53 2104470659030355 53 2468433344406645 53 4167419818747185 53 5622222735873975 53 R.Gerbicz [Done] 5647906352943855 54 14596462934859645 54 9675588697854555 54 2400502941005715 54 3506258867210715 54 5204333779495305 54 1101248981187285 54 10105988764050795 54 Greenbank [Done] 19644738069851895 55 Greenbank [Done] 4356015966090075 56 Kosmaj [5E15] 87653084113035 57 Kosmaj [2E15] 17871561203266155 58 Kosmaj 42210084958591935 58 Kosmaj 45307176385075605 58 Kosmaj 46259463855164175 58 Kosmaj 50067984112666905 58 Kosmaj 52035604613787795 58 Kosmaj [7E16] 74362823389729875 58 Greenbank [8E16] 2348074892952495 59 3380369146304535 59 5973326670402945 59 7365626017878345 59 9593141900086605 59 8537255710868115 59 4451592815485725 59 6857355849333465 59 8516722688845665 59 4168021941682305 59 13693913473485315 59 12042323140434825 59 16643614185878295 59 18112802603245665 59 16252412670268845 59 robert44444uk [20000T] [B]RESERVED[/B] 6584335653605325 60 51593298019338075 60 87084056712267615 60 Kosmaj [2E17] FOUND 7764528700980975 61 Greenbank [1E16] FOUND 99828673281855 62 286846836764775 62 1692654062704395 62 3574476316006155 62 6553886937433395 62 Kosmaj [9E15] 388632315499893465 63 125767781644900395 63 254659030703432355 63 452712136329581205 63 345015428043514305 63 94550773355550435 63 218188773358674195 63 210649460251372065 63 Greenbank [2E17] FOUND 22619379006114345 64 [50000T] Greenbank 150841400071381635 65 187746339227937105 65 291458875432298805 65 146213957588533065 65 115946800921892325 65 192055957021304145 65 [300000T] Greenbank FOUND 229350894172785 66 tcadigan [1E15] FOUND 67 [3E15] 68 [3E15] 69 [3E15] 14494401979227555 70 Kosmaj [2E16] FOUND 20014126443725085 71 Kosmaj [2.7E16] FOUND 86637546327325245 72 Greenbank [1E17] FOUND 37990374090023355 76 Kosmaj [6E16] FOUND 55670925034625355 79 Greenbank [7E16] FOUND 80 Kosmaj [1E15] 81 Kosmaj [1E15] 82 Kosmaj [1E15] 372589899664857105 83 Kosmaj [4.7E17] FOUND 84 Kosmaj [1E15] 85 Kosmaj [1E15] 86 Kosmaj [1E15] 9340589605191285 87 Greenbank [10000T] FOUND 88 Greenbank [1152921T] LIMIT OF DODECA_30 89 Greenbank [50000T] 303435075929440455 90 Greenbank [304000T] FOUND 57419840812969635 91 Kosmaj [B]RESERVED[/B] -------------------------------------------------------------------------------- [B]Any errors/corrections please post in this thread.[/B] [B]Do not use this thread for discussions. All discussions will be moved.[/B] |
59
Taking 59 from 2E15. Will let you know max range checked in a couple of days
Regards Robert Smith |
n=58 checked to 7E16, 6 DodecaProths found (see the other thread). Stopped.
Reserving [B]n=60[/B]and [B]n=76[/B]. |
n=63 is proving tricky. I've gone to 20000T and nothing. Extending the search to a mighty 500000T (yes, that's 5E17) which should be done by tomorrow afternoon.
n=79 searched to 13000T with nothing, extending to 50000T (5E16). Update. Got n=63 at a shade under 100000T (1E17). n=79 has nothing to 20000T, going up to 70000T (7E16) which will take about 13 hours. |
Some at 59
n=59, kmin=4000T, kmax=10000T, version=2.5, here T=10^12
Starting the sieve... Using the first 10 primes to reduce the size of the sieve array 5973326670402945 59 7365626017878345 59 9593141900086605 59 8537255710868115 59 4451592815485725 59 6857355849333465 59 8516722688845665 59 4168021941682305 59 The sieving is complete. Number of Prp tests=4673896 Time=29259 sec. n=59, kmin=10000T, kmax=20000T, version=2.5, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array n=59, kmin=10000T, kmax=20000T, version=2.5, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 13693913473485315 59 12042323140434825 59 16643614185878295 59 18112802603245665 59 16252412670268845 59 The sieving is complete. Number of Prp tests=7794070 Time=48222 sec. Max spiders legs (I think) = 2 Will continue with this for one more day Regards Robert Smith |
And two tiddlers
n=59, kmin=2000T, kmax=4000T, version=2.5, here T=10^12
Starting the sieve... Using the first 10 primes to reduce the size of the sieve array 2348074892952495 59 3380369146304535 59 The sieving is complete. Number of Prp tests=1561211 Time=10067 sec. |
n=76 completed to 6E16, one DodecaProth found as reported.
Taking n=83, and still working on n=71. BTW, while testing the latest version of dodeca3 I checked all n 80 <= n <= 90 to 1E15. Of course I found no DodecaProths. :grin: |
Woohoo, finally got n=79 at under 6E16
#../dodeca30 79 20000T 70000T You can also find the k n values in results_dodeca.txt file ( These are 3-probable primes ) n=79, kmin=20000T, kmax=70000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 55670925034625355 79 The sieving is complete. Number of Prp tests=443629230 Time=49701 sec. Going back to Octoproths for a while. |
k=71 and k=83
[B]20014126443725085 71 [/B][2.7E16]
[B]372589899664857105 83 [/B][4.7E17] :cool: Taking a short break, no new reservations. :coffee: |
Reserving n=91.
|
n=91
[B]57419840812969635 91[/B] :smile: [In Progress]
|
9340589605191285 87 Greenbank [10000T] FOUND
Going back and filling in the gaps. n=64 reserved. |
Greenbank
It will be nice if you can announce your reservations in advance, like all the others. Thanks!
|
I normally just edit the status at the top directly.
I'll post my reservations as normal from now on... |
$ ../dodeca30 64 10000T 50000T
You can also find the k n values in results_dodeca.txt file ( These are 3-probable primes ) n=64, kmin=10000T, kmax=50000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 22619379006114345 64 The sieving is complete. Number of Prp tests=255929550 Time=18615 sec. Reserving n=65. |
n=88 checked to 1152921T and none found!
n=88, kmin=0T, kmax=1000T, version=3.0, here T=10^12 Starting the sieve... Using the first 10 primes to reduce the size of the sieve array The sieving is complete. Number of Prp tests=1043746 Time=246 sec. n=88, kmin=1000T, kmax=10000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array The sieving is complete. Number of Prp tests=9398311 Time=1609 sec. n=88, kmin=10000T, kmax=100000T, version=3.0, here T=10^12 Starting the sieve... Using the first 12 primes to reduce the size of the sieve array The sieving is complete. Number of Prp tests=94011886 Time=15724 sec. n=88, kmin=100000T, kmax=200000T, version=3.0, here T=10^12 Starting the sieve... Using the first 12 primes to reduce the size of the sieve array The sieving is complete. Number of Prp tests=104471197 Time=9868 sec. n=88, kmin=200000T, kmax=300000T, version=3.0, here T=10^12 Starting the sieve... Using the first 12 primes to reduce the size of the sieve array The sieving is complete. Number of Prp tests=104469691 Time=9865 sec. n=88, kmin=300000T, kmax=1000000T, version=3.0, here T=10^12 Starting the sieve... Using the first 12 primes to reduce the size of the sieve array The sieving is complete. Number of Prp tests=731066801 Time=53935 sec. n=88, kmin=1000000T, kmax=1152921T, version=3.0, here T=10^12 Starting the sieve... Using the first 12 primes to reduce the size of the sieve array The sieving is complete. Number of Prp tests=159716548 Time=13929 sec. That is the highest T below 2^60 (the limit of dodeca30) at the moment. Anyway, onwards with n=65. |
n=90 done. Set it off for 300000T to 400000T and it quickly popped up with one just below 304000T so I restarted it on this smaller range.
$ ../dodeca30 90 300000T 304000T You can also find the k n values in results_dodeca.txt file ( These are 3-probable primes ) n=90, kmin=300000T, kmax=304000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 303435075929440455 90 The sieving is complete. Number of Prp tests=7551605 Time=571 sec. |
59
Tested 59 now up to 92000T, plenty of dodecas, but none with more than two legs, right or left
Full results: 2348074892952495 3380369146304535 5973326670402945 7365626017878345 9593141900086605 8537255710868115 4451592815485725 6857355849333465 8516722688845665 4168021941682305 13693913473485315 12042323140434825 16643614185878295 18112802603245665 16252412670268845 22709096095218225 28675183364772945 22423230830763525 23104149461636565 32614588836975075 31243999534789335 35081125383540915 30631531836890985 40222045009560015 39240625652716635 36479043591784395 39286064347410195 37781376117259005 39698961007434435 38961624723430185 44275148497658295 62919657201157995 52790410633630215 47368063063108935 56285618616036495 54149263209133785 44427527346266925 72016659343442415 70516911831145395 71403188883346005 74017737464478045 68738001105089715 71634721872187635 70477710075953565 68750708881966335 71359200965274915 81779177935969605 77110143894153825 76078270000252065 88319693393101485 82149068190537495 82145306864351955 90024743512089225 Will take this one further Regards Robert Smith |
Greenbank, please reserve for me n=60. I'll complete the full range for this n.
Nice results Robert, n=59 is crowded by dodecaproths, if my prediction is correct then there are about f(59)=282 dodecaproths for this n value! Just to compare that seeing my prediction: there is only about 73 dodecaproths for all n<59 altogether! |
n=91 completed to 7.5E17.
Reserving n=103. |
[QUOTE=Kosmaj]n=91 completed to 7.5E17.
Reserving n=103.[/QUOTE] OK, in the new dodeca_4_0 program I've increased n limit from 99 to 127, after seeing a dodecaproth for n=91. Just to compare if n is about 128 then it is more than 50 times harder to find a dodecaproth if n is about 90 |
question, I keep reading taking n's to full range. What is the full range
|
[QUOTE=grobie]question, I keep reading taking n's to full range. What is the full range[/QUOTE]
qrobie, the full range for n means that you calculate all dodecaproths for a given n. Because we are interested only for positive primes in this search, it means that the largest k value for every n is 2^n, because for this k it will be the first case that one of the form of the eight: 2^n-k=0. So to complete the full range for n means that the [0,2^n] interval is examined for n. For example Kosmaj has completed 0T,200000T for n=60, but I hope I can complete the full range it means that I will do only [200000T,1152922T] interval for n=60, because 2^60=1152921504606846976>1152921T, so I've to choose 1152922T for upper bound. Note that for every n you can choose also much larger values for kmax>2^n, because there is no error checking for this in the program, but the program is completely wrong for negative numbers because in the prp checking part I use prm, and not abs(prm), it means that this isn't a 3-prp checking routine for negative numbers! |
$ ../dodeca30 65 100000T 300000T
You can also find the k n values in results_dodeca.txt file ( These are 3-probable primes ) n=65, kmin=100000T, kmax=300000T, version=3.0, here T=10^12 Starting the sieve... Using the first 12 primes to reduce the size of the sieve array 150841400071381635 65 187746339227937105 65 291458875432298805 65 146213957588533065 65 115946800921892325 65 192055957021304145 65 The sieving is complete. Number of Prp tests=813413220 Time=45287 sec. |
n=89 tested to 50000T with no luck. Releasing this n.
|
More 59
n=59, kmin=132000T, kmax=150000T, version=3.0, here T=10^12
Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 142529130061933545 59 132282301423013595 59 141488830544441835 59 148090090116026205 59 143879552732104665 59 147023762537574615 59 132186902335321155 59 142126704368917485 59 132302469931281195 59 146045286376440675 59 147985562126490795 59 The sieving is complete. Number of Prp tests=469489294 Time=45070 sec. n=59, kmin=150000T, kmax=170000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 166707487855539015 59 167873162917154625 59 161681335300835805 59 155665733687007705 59 162883979087041905 59 166284684987599955 59 The sieving is complete. Number of Prp tests=521577011 Time=45559 sec. Regards Robert Smith |
I've started the full range for n=60 yesterday, it'll take one more day to complete it, this is an easy task for my PC.
|
Results for n=60
OK Here is the full report for n=60. I've started from 0T to check also previous results.
Unfortunately it is probably that there are other dodecaproths for this n because there was a system crash at over 90% I'll restart in future this n n=60, kmin=0T, kmax=1152922T, version=4.0, here T=10^12 Starting the sieve... Using the first 12 primes to reduce the size of the sieve array 1001243243456345505 60 390865756299178545 60 696222250051968255 60 87084056712267615 60 738135165061228935 60 596866586195208945 60 6584335653605325 60 746454911455013145 60 596897640498659115 60 51593298019338075 60 214805435087153295 60 708937872345663345 60 233884680348644325 60 844085783132336745 60 1047406954816697475 60 495749474272803135 60 |
More at 59
Herre are some more at 59. none have greater than 2 legs, left or right
n=59, kmin=170000T, kmax=190000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 185428250090913375 59 182640661231643685 59 172496379366280515 59 181163199885726765 59 189690430275071565 59 181741419442357635 59 186019783116235215 59 182357362166429835 59 180149412164216565 59 The sieving is complete. Number of Prp tests=521442698 Time=44161 sec. n=59, kmin=190000T, kmax=270000T, version=3.0, here T=10^12 Starting the sieve... Using the first 12 primes to reduce the size of the sieve array 233033443016869635 59 228893015441726475 59 197443996029682185 59 194758011980662515 59 235668551318655525 59 258242706173642715 59 236388702909963765 59 266420463433068105 59 219284219081729655 59 191204184229655835 59 259615993481342715 59 191493655070131575 59 251609145886816935 59 244307191930921665 59 194885473865908665 59 205267349649366165 59 229310754899550555 59 226483573020955635 59 259996147815358815 59 236806483657111515 59 215293780748584755 59 216897788823158205 59 230500222997723385 59 231123585640621275 59 257830865916383445 59 236778291047131995 59 261927378327181245 59 218256479646320115 59 250677775360766985 59 216846902874352065 59 244481747126464995 59 250158685432165965 59 265335088882943625 59 241358910131358705 59 213152690268596295 59 231363423962595855 59 197012851986176625 59 247770892379288985 59 230035385576106495 59 194245196176670415 59 226117288448881305 59 The sieving is complete. Number of Prp tests=2085008465 Time=149491 sec. n=59, kmin=270000T, kmax=290000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 285626630136356985 59 270908312736846015 59 283651732288501815 59 272413330495577565 59 274571581367031165 59 271919777626866075 59 271562193211725255 59 276507817610588655 59 276206181486896955 59 288480905427174075 59 275287292321672925 59 272386594525642905 59 289072044161168415 59 The sieving is complete. Number of Prp tests=520893275 Time=43509 sec. n=59, kmin=290000T, kmax=310000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 307068013093896915 59 308769200953475955 59 296449398277227195 59 300878393450210415 59 307166395861055115 59 The sieving is complete. Number of Prp tests=520827938 Time=43546 sec. Regards Robert Smith |
59 complete~!!!!!
Some more results, up to the limit
n=59, kmin=310000T, kmax=330000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 326003457156806205 59 326783285833491795 59 317647156792506765 59 329196642199085955 59 314479522892275965 59 322294412246537955 59 310875723565091685 59 The sieving is complete. Number of Prp tests=520697886 Time=43529 sec. n=59, kmin=330000T, kmax=350000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 340842929149728075 59 348912712470007455 59 349025248689447015 59 345848401963823535 59 347200185959647335 59 337152353606281815 59 342619249549964625 59 333159634113966135 59 The sieving is complete. Number of Prp tests=520479472 Time=44983 sec. n=59, kmin=350000T, kmax=360000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 359667765070203135 59 358067900498049525 59 354998739190598265 59 358293196150822695 59 The sieving is complete. Number of Prp tests=260249023 Time=22537 sec. n=59, kmin=360000T, kmax=400000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 364007465423421435 59 364421235188765895 59 396998477234361765 59 391801965283653015 59 378424390509233775 59 369965358773391675 59 385593836243225925 59 377625171727534185 59 382112117023853895 59 371451730045631235 59 361425321405852795 59 368896003896294945 59 398500949122195605 59 389591658367183125 59 386531511972345285 59 379140059389893585 59 393955701707552145 59 379101600529147335 59 377098236156617115 59 The sieving is complete. Number of Prp tests=1040749584 Time=90189 sec. n=59, kmin=400000T, kmax=420000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 411988613465524095 59 416549160133632435 59 408222898544399715 59 415863655107100725 59 414590902770750615 59 405510942301570035 59 413337217758434655 59 419901819845183445 59 411100055240436345 59 The sieving is complete. Number of Prp tests=520277105 Time=44314 sec. n=59, kmin=420000T, kmax=430000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 422446099960179225 59 422428079430344295 59 The sieving is complete. Number of Prp tests=260066171 Time=22538 sec. n=59, kmin=430000T, kmax=450000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 447462330516118155 59 442985423403853785 59 447771614808761565 59 446564853796383105 59 439513951495493805 59 442258021455951225 59 433395656028872775 59 432725195658322875 59 446341469513038785 59 438224385410606025 59 440892456667247445 59 439505398432233735 59 444511389954933525 59 448129705242637635 59 434837967104233455 59 430438104098792475 59 The sieving is complete. Number of Prp tests=520137222 Time=44371 sec. n=59, kmin=45000T, kmax=470000T, version=3.0, here T=10^12 Starting the sieve... Using the first 12 primes to reduce the size of the sieve array n=59, kmin=45000T, kmax=47000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array n=59, kmin=450000T, kmax=470000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 450359095807403475 59 450464601930745185 59 464741515983850035 59 465517302388315485 59 455583343581934785 59 The sieving is complete. Number of Prp tests=520025879 Time=45971 sec. n=59, kmin=470000T, kmax=480000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 471740340158752665 59 476858702566465695 59 470074753649509785 59 474265706695613595 59 474877621726257225 59 470207204596640805 59 The sieving is complete. Number of Prp tests=260002788 Time=23366 sec. n=59, kmin=480000T, kmax=500000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 490757485419722745 59 492668865862516035 59 487553581636871295 59 493563401496748275 59 480568985067794385 59 498458183256781965 59 496210504750189005 59 490633126312987875 59 The sieving is complete. Number of Prp tests=519981683 Time=43829 sec. n=59, kmin=500000T, kmax=520000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 514110345199115805 59 511094727506311725 59 518245327094575395 59 502747020901725285 59 514770633475061565 59 500439392815716585 59 505986543766038195 59 512812241704312935 59 512034892293468705 59 513650837950280415 59 The sieving is complete. Number of Prp tests=519908885 Time=48839 sec. n=59, kmin=52000T, kmax=53000T, version=3.0, here T=10^12 Starting the sieve... Using the first 10 primes to reduce the size of the sieve array n=59, kmin=520000T, kmax=530000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 520232265746971995 59 526408851201457455 59 The sieving is complete. Number of Prp tests=259964498 Time=22279 sec. n=59, kmin=530000T, kmax=550000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 536768491983263085 59 548848283202836925 59 549328432488351285 59 545540689522182585 59 537984421503724125 59 The sieving is complete. Number of Prp tests=519837456 Time=43484 sec. n=59, kmin=550000T, kmax=570000T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array 566820069507957405 59 569727241031286555 59 559549403657868855 59 563701224098538435 59 568673534953655355 59 552334285186220775 59 552932990236674285 59 552487560908582985 59 554113906982310675 59 554036894540593065 59 564335879659426035 59 The sieving is complete. Number of Prp tests=519947548 Time=43885 sec. n=59, kmin=570000T, kmax=576461T, version=3.0, here T=10^12 Starting the sieve... Using the first 11 primes to reduce the size of the sieve array The sieving is complete. Number of Prp tests=168066165 Time=15092 sec. Regards Robert Smith |
Congratulation Robert!
It was a great work. |
All times are UTC. The time now is 12:23. |
Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.