mersenneforum.org

mersenneforum.org (https://www.mersenneforum.org/index.php)
-   Proth Prime Search (https://www.mersenneforum.org/forumdisplay.php?f=109)
-   -   GM(1667321) is GM38 (https://www.mersenneforum.org/showthread.php?t=19253)

Cruelty 2011-01-14 07:07

2^1667321-2^833661+1 (501914 digits) Gaussian Mersenne norm 38

Kosmaj 2011-01-17 04:28

[B]Cruelty[/B]

Congrats on a nice prime!
Can you share exe times, hardware details with us.

Thanks.

Cruelty 2011-01-20 13:10

Thanks! :smile:
The search runs on single core of C2Q @ 3GHz. Single test using LLR takes ~4800 sec.

Cruelty 2011-01-20 13:15

Well, here comes 6-th largest PRP @ 502485 digits ;-)

(2^1669219-2^834610+1)/5 is 5-PRP, originally found using LLR ver.3.8.4 for Windows (no factor till 2^54).
This is a Fermat PRP at base 3, 5, 7, 11, 13, 31, 101, 137 - confirmed with PFGW ver.3.4.4 for Windows (32-bit).

Additionally using the following command with PFGW:
pfgw -l -tc -q(2^1669219-2^834610+1)/5

I've received the following result:
[code]Primality testing (2^1669219-2^834610+1)/5 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 2
Running N-1 test using base 5
Running N-1 test using base 7
Running N-1 test using base 11
Running N-1 test using base 19
Running N-1 test using base 29
Running N+1 test using discriminant 37, base 2+sqrt(37)
Calling N-1 BLS with factored part 0.02% and helper 0.00% (0.07% proof)
(2^1669219-2^834610+1)/5 is Fermat and Lucas PRP! (229144.7431s+0.0642s)[/code]


All times are UTC. The time now is 03:22.

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.