mersenneforum.org

mersenneforum.org (https://www.mersenneforum.org/index.php)
-   Computer Science & Computational Number Theory (https://www.mersenneforum.org/forumdisplay.php?f=116)
-   -   Consecutive p-smooth integers (https://www.mersenneforum.org/showthread.php?t=19875)

XYYXF 2014-12-05 17:32

Consecutive p-smooth integers
 
Let's define L(n, k) as the largest prime factor of product

n*...*(n+k)

of k+1 consecutive integers, starting at positive integer n.

So we have, for example,
L(4374, 1) = 7
L(48, 2) = 7
L(350, 2) = 13
L(138982582998, 2) = 103
L(61011223, 3) = 163
L(23931257472314, 3) = 631
L(1517, 4) = 41
L(3294850, 5) = 239
L(1913253200, 8) = 3499
L(8559986129664, 12) = 58393
L(48503, 14) = 379

[B]Conjecture:[/B]
as n goes to infinity,

lim inf L(n, k) / (log n)^2 = C_k

The very rough estimates of constants C_k are:
C_1 ~ 0.0376
C_2 ~ 0.258
C_3 ~ 0.907
C_4 ~ 2.46
C_5 ~ 5.16
C_6 ~ 11.4
C_7 ~ 19
C_8 ~ 42
C_9 ~ 70
C_10 ~ 140
C_11 ~ 200
C_12 ~ 250
C_13 ~ 380
C_14 ~ 430
C_15 ~ 460

Some successive minima of L(n, k) are shown there:
[url]http://oeis.org/A193943[/url]
[url]http://oeis.org/A193944[/url]
[url]http://oeis.org/A193945[/url]
[url]http://oeis.org/A193946[/url]
[url]http://oeis.org/A193947[/url]
[url]http://oeis.org/A193948[/url]
[url]http://oeis.org/A199407[/url]
[url]http://oeis.org/A200566[/url]
[url]http://oeis.org/A200567[/url]
[url]http://oeis.org/A200568[/url]
[url]http://oeis.org/A200569[/url]
[url]http://oeis.org/A200570[/url]
[url]http://oeis.org/A209837[/url]
[url]http://oeis.org/A209838[/url]
[url]http://oeis.org/A209839[/url]

Any suggestions on the conjecture? Does it depend on other
known ones like Twin prime conjecture or ABC conjecture?

Great thanks for any information on the subject.


All times are UTC. The time now is 12:36.

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.