-   No Prime Left Behind (
-   -   Report top-5000 primes for all k<=1001 (

gd_barnes 2008-01-21 07:18

Report top-5000 primes for all k<=1001
Please report all top-5000 primes for k<=1001 in this thread.

The Prime Wiki has a list of all primes found and search-ranges previously completed on the k's that we will be searching [URL=""]here[/URL]. It includes all known n-ranges starting at n=1 and will be updated as we complete n-ranges and find primes. For 300<k<=1001 and n>=260K, the ranges and primes will be shown in the team drives here.

Instructions for submitting a top-5000 prime:

Step 1: For people who have not submitted top-5000 primes previously, create a prover account:
1. Go to [URL][/URL].
2. Fill out the form and submit it. You will be assigned a prover account.

Step 2: Create a proof code:
1. Go to [URL][/URL].
2. Type in your name that you created in step 1 in the space provided.
3. In the list of proof programs. Select Jean Penne's LLR. (If you used PFGW then select OpenPFGW.)
4. In the space below all of the proof programs that says "none", type "NPLB, srsieve, psieve" (WITH the commas and a space in between each but without the quotes) for the project and sieving software. [If you did an individual-k search on your own, then the software may vary.]
5. You should now have a new proof code and can submit the prime. Example...L442.

Step 3: Submit the prime:
1. Go to [URL][/URL].
2. Next to 'search for proof-code', type your new code from step 2 and press enter.
3. Towards the bottom, next to 'Submit primes using this code as', click on your name (prover account) and press enter.
4. You should see a big free-form box. Type in your prime (no spaces needed) and click 'Press here to submit these prime(s)'.
5. If necessary in the little pop-up box, type in your user name (prover account) and password and press enter.
6. A verification screen will come up. If the prime is correct, click 'Press here to complete submission'.


gd_barnes 2008-01-22 11:13

Prime to get us started...
It's not quite top-5000 material but here's the first one to get us started:

745*2^333239-1 is prime (100318 digits)

This is pretty good for this k-value. Even thought it's relatively average weight, up to n=260K, its previous highest prime to date was at n=75771.


kar_bon 2008-01-22 13:55

here we go:

747*2^333709-1 is prime! (100460 digits)

gd_barnes 2008-01-22 16:13

[quote=kar_bon;123496]here we go:

747*2^333709-1 is prime! (100460 digits)[/quote]

:cool: Bring it on!

I want it noted that Prime Search has 53 top-5000 primes (now 54) at the beginning of this project and is in 9th place. We should be able to fairly quickly move up into 6th place, which is the old 15k project that has 82 primes.

Edit: It's kind of interesting that our first two primes were for k=745 and k=747.


em99010pepe 2008-02-01 09:04

495*2^338804-1 is prime!

639*2^343683-1 is prime!

639*2^343305-1 is prime!
489*2^343303-1 is prime!

gd_barnes 2008-02-01 16:14

[quote=em99010pepe;124493]495*2^338804-1 is prime![/quote]

FINALLY! A top-5000 prime for 400<k< 500. There are just a few less k's in the 400's than the others due to prior reservations and searches but it was still surprising how long it took to find one.

2 more to move into 7th place all alone!

gd_barnes 2008-02-04 17:26

[quote=em99010pepe;124732]639*2^343305-1 is prime!
489*2^343303-1 is prime![/quote]

Great run Carlos! That's amazing on k=639. I cannot recall primes so close together on a single k at such a high n and such a low k. (only n=378 difference)

In the mean time, another 'smaller' one:

533*2^321410-1 is prime


mdettweiler 2008-02-05 16:42

[quote=em99010pepe;124835]From LLRNet

693*2^321959-1 is prime! (IronBits)[/quote]

[quote=em99010pepe;124838]From LLRNet (IronBits)

795*2^322014-1 is prime!

EDIT: Primes from LLRNet were double-checked.[/quote]
Yay! Our first LLRnet primes! And in such close succession! :w00t:

gd_barnes 2008-02-05 17:33

Wow, I'm offline for 10 hours to get some rest and I come back and we have 5 new primes including 2 top-5000's!!


em99010pepe 2008-02-10 20:13

All primes so far found by LLRNet have been double-checked by me using LLR 3.7.1c on an AMD 64 3000+ (2GHz).

[code]693*2^321959-1 is prime! Time : 255.119 sec.
795*2^322014-1 is prime! Time : 234.755 sec.
833*2^322530-1 is prime! Time : 277.265 sec.
423*2^324430-1 is prime! Time : 266.972 sec.
565*2^324789-1 is prime! Time : 240.924 sec.
495*2^325070-1 is prime! Time : 240.929 sec.
473*2^325256-1 is prime! Time : 240.986 sec.
789*2^325375-1 is prime! Time : 320.555 sec.
705*2^325274-1 is prime! Time : 241.211 sec.
741*2^325661-1 is prime! Time : 241.499 sec.
625*2^327291-1 is prime! Time : 242.718 sec.
603*2^325792-1 is prime! Time : 286.115 sec.
667*2^327465-1 is prime! Time : 141.441 sec.
915*2^328673-1 is prime! Time : 292.732 sec.
605*2^329452-1 is prime! Time : 293.204 sec.
833*2^329490-1 is prime! Time : 293.129 sec.
895*2^329641-1 is prime! Time : 346.403 sec.
987*2^329652-1 is prime! Time : 326.962 sec.
987*2^330033-1 is prime! Time : 341.785 sec.
973*2^330363-1 is prime! Time : 325.952 sec.
705*2^330472-1 is prime! Time : 338.511 sec.[/code]

em99010pepe 2008-02-13 17:26

Yes he does.

[02/13/08 17:07:35]
573*2^350426-1 is prime!

With only one core on LLRnet!!!

441*2^323913-1 is prime! (Confirmed)

All times are UTC. The time now is 00:52.

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.