mersenneforum.org (https://www.mersenneforum.org/index.php)
-   Factoring (https://www.mersenneforum.org/forumdisplay.php?f=19)

 wblipp 2015-07-29 04:46

[URL="http://factordb.com/index.php?id=1100000000125988225"](4019^17-1)/4018[/URL] = P58

[URL="http://factordb.com/index.php?id=1100000000517264398"](P58^5-1)/(P58-1)[/URL] was #107 on the [URL="http://www.lirmm.fr/~ochem/opn/mwrb2000.txt"]most wanted list[/URL]

NFS@home Sieved this and Tom Womack has post-processed it. The remaining residual was P101 * P129.

 RichD 2015-08-04 17:06

[URL="http://www.factordb.com/index.php?id=1100000000507711837"]14683^53-1[/URL] as P47 * P50 * P121

 chris2be8 2015-08-05 15:43

I'll reserve a few from the most wanted list for ECM to T45, then SNFS if that doesn't factor them:
1907^59-1
30323^43-1
30341^43-1
30367^43-1
60231952930138111^13-1
78816007^23-1

Chris

 chris2be8 2015-08-08 15:40

I've just had a burst of ECM hits:
30367^43-1 [code]
********** Factor found in step 2: 21209894238211757565828145925468236887227
Found probable prime factor of 41 digits: 21209894238211757565828145925468236887227
Composite cofactor 8597162901357768936087224364316382429841551512089422173642791617794520666054528355600927339013989155371503915462775082060293948394468910018332323091 has 148 digits
[/code]60231952930138111^13-1 [code]
********** Factor found in step 1: 581213727061059778656748836293
Found probable prime factor of 30 digits: 581213727061059778656748836293
Composite cofactor 3922721484105541441838351370838451000637941949971664345395970366109469388245294096041855437803834866479605632047317214278756245155667930822798988015533086765811416224428301 has 172 digits
[/code]78816007^23-1 [code]
********** Factor found in step 2: 492593009695695502979630606406557
Found probable prime factor of 33 digits: 492593009695695502979630606406557
Composite cofactor 1079019250874958676274474392264563885220576364820688672786374729801874628302567056943943094554882327993072869000496746839153222976551469453501 has 142 digits
********** Factor found in step 2: 1184754505738364633536108966357649219
Found probable prime factor of 37 digits: 1184754505738364633536108966357649219
Composite cofactor 448630781933036426532815245912216006383986122427243506828887676236346595774911611663962882376300239505818674106032522544278343150067733603 has 138 digits
[/code]Which caused a temporary shortage of ECM work. So I'll reserve a few more:
14029^47-1
31583^43-1
31729^43-1
31957^43-1
31991^43-1
32003^43-1

Chris

PS. Who factored 4851463^29-1?

 chris2be8 2015-08-10 15:37

[QUOTE=wblipp;398283]The following may be of interest - they are also ready for SNFS[INDENT]38971^47-1
4283^61-1
[strike]8081^59-1[/strike][/INDENT][/QUOTE]

Is anyone working on 38971^47-1? If not I'll do it.

Chris

 chris2be8 2015-08-10 21:17

I've had another burst of ECM hits:
31729^43-1 [code]
********** Factor found in step 2: 17496048784828588600134282648741457
Found probable prime factor of 35 digits: 17496048784828588600134282648741457
Probable prime cofactor 65802419734350804944352972745213825724124206840778880134962035479022233789936459416991899622295226239640610838816517192793236634873902507720579028098422603 has 155 digits
[/code]
31957^43-1 [code]
********** Factor found in step 2: 3231134832645944161617441942596955303953
Found probable prime factor of 40 digits: 3231134832645944161617441942596955303953
Probable prime cofactor 481316356931769243226386451116290827042791461503591625897820906427101444601177986114159516112077602442365604305654989272471581938409457145268205736919 has 150 digits
[/code]
So I'll reserve some more:
2559656328612645724892526531521087^7-1
32309^43-1
32443^43-1
32533^43-1
32537^43-1

Chris

 chris2be8 2015-08-12 15:52

[QUOTE=chris2be8;407611]Is anyone working on 38971^47-1? If not I'll do it.

Chris[/QUOTE]

No response, so I'll queue it for SNFS. It should be done in about a week.

Chris

 RichD 2015-08-14 01:37

I have been working sporadically in the Txxxx files.
I hope to get back in to the heavy hitters soon.

 chris2be8 2015-08-14 15:36

I'll reserve a few more fairly small ones for ECM, to be followed by SNFS if necessary:
33247^43-1
33329^43-1
33461^43-1
33589^43-1

@RichD, if you want some heavy hitters the following would be worthwhile:
15083^53-1
15259^53-1
15467^53-1

Please reserve them here before you start work, to prevent wasted effort.

Chris

 RichD 2015-08-14 22:24

[QUOTE=chris2be8;407955]@RichD, if you want some heavy hitters the following would be worthwhile:
15083^53-1
15259^53-1
15467^53-1[/QUOTE]

Whoa! These are SNFS-226. That may be over a month for me.

I'll start on the first and do the ECM to t50.

 chris2be8 2015-08-18 15:46

And I'll reserve a few more smallish ones for ECM, to be followed by SNFS if necessary:
3267017731^19-1
33769^43-1
33809^43-1
33961^43-1

Chris

 RichD 2015-08-18 18:23

I ran a few extra for 15083^53-1.
7850 @ 43e6.
Releasing number to SNFS, a nice sextic.
-15083+(15083^9)^6

 RichD 2015-08-18 20:28

Forgot to mention, starting ECM on the next number.
15259^53-1

 RichD 2015-08-19 00:22

15259^53-1

Quick solution. :-)
[CODE]********** Factor found in step 2: 33151121440314013162840043172892691367414107687
Found probable prime factor of 47 digits: 33151121440314013162840043172892691367414107687
Probable prime cofactor ((15259^53-1)/(15259-1))/33151121440314013162840043172892691367414107687 has 172 digits[/CODE]

Starting third number for ECM.

 RichD 2015-08-20 11:08

15467^53-1

Another quick solution.
[CODE]********** Factor found in step 2: 155055119198946098003085581640219675186275020787
Found probable prime factor of 48 digits: 155055119198946098003085581640219675186275020787
Probable prime cofactor ((15467^53-1)/(15467-1))/155055119198946098003085581640219675186275020787 has 171 digits[/CODE]

 chris2be8 2015-08-20 15:45

Thanks!

In the hope that your run of luck continues here are a few more numbers worth ECMing:
16141^53-1
16217^53-1
16231^53-1
18956983^29-1
24671^47-1
24709^47-1
25037^47-1

The last 3 are a bit easier so need less ECM. And would be easier to do by SNFS if you wanted.

Chris

 RichD 2015-08-20 20:45

I'll take 24671^47-1 to see how long that takes.
I'm guessing if I go all the way thru SNFS it will be 2-3 weeks.

 chris2be8 2015-08-22 15:26

38971^47-1 is factored: [code]
r1=72344043690148089394696868014624145276982560409178684235275384119401981 (pp71)
r2=206404738387080489993606356045301747498270416491717713049737085562601275032518326548540457141789803553567230713568608821108163036535607966257 (pp141)
[/code]
It took a bit longer than I said because I underestimated how long the smaller jobs I had queued in front of it would take. Once it was started it took 5 days 10 hours.

Chris

 RichD 2015-08-24 22:11

I'll take the other two.
24709^47-1
25037^47-1

Not sure when I will start on them since the first is just over one-third sieving.

 RichD 2015-08-25 13:12

Quick ECM finds for [URL="http://www.factordb.com/index.php?id=1100000000520161043"]24709^47-1[/URL] as P35 * P38 * P131

 RichD 2015-08-25 23:15

A couple quick ECM finds left a C122 which was a relatively easy GNFS job.

[URL="http://www.factordb.com/index.php?id=1100000000520161048"]25037^47-1[/URL] as P40 * P41 * P43 * P80

 chris2be8 2015-08-26 15:56

[QUOTE=RichD;408238]I ran a few extra for 15083^53-1.
7850 @ 43e6.
Releasing number to SNFS, a nice sextic.
-15083+(15083^9)^6[/QUOTE]

I'll reserve this for SNFS. ETA about 2 weeks.

Chris

 RichD 2015-08-27 20:38

[URL="http://www.factordb.com/index.php?id=1100000000520161042"]24671^47-1[/URL] as P62 * P141.

I'll start working on 18956983^29-1 next.

 chris2be8 2015-08-30 15:55

I'll reserve the remaining small(ish) numbers in the most wanted list for ECM to T45 while I factor 15083^53-1. Any survivors will be queued for SNFS after that's done.
1999^59-1
2701483^29-1
34319^43-1
34603^43-1
34981^43-1
35117^43-1
35149^43-1
35543^43-1

Chris

 RichD 2015-09-03 13:47

I'll start working on the following in the coming days.
16141^53-1
16217^53-1
16231^53-1

ECM to t50 and may or may not perform SNFS.
(I will release when done.)

 RichD 2015-09-08 14:54

[URL="http://www.factordb.com/index.php?id=1100000000529440199"]18956983^29-1[/URL] as P60 * P63 * P82

 RichD 2015-09-09 20:58

16141^53-1

7600 @ 43e6, no factor.
Perhaps NFS@Home might be interested.

Edit: Releasing number.

 debrouxl 2015-09-10 05:31

A bit small for NFS@Home's 14e, outside of challenge periods, where SNFS difficulty 22x do indeed make good fillers.

 chris2be8 2015-09-11 15:44

16141^53-1 is a bit too big for me, so I'll reserve a smaller number for ECM, to be followed by SNFS if necessary:
1091482926139472107^13-1

Chris

 RichD 2015-09-12 00:54

I'm also starting some ECM work on:
1327736012762191^17-1

 RichD 2015-09-14 09:17

Releasing 16217^53-1 for SNFS on big iron.
I have done the following ECM.
6200 @ 43e6
1200 @ 11e7
I think it is enough for 2/9 SNFS for this 228 difficulty.
(If not, I can run a few more curves.)

 chris2be8 2015-09-15 15:34

I've nearly finished ECM on 1091482926139472107^13-1 so I'll reserve another number for ECM:
590713^37-1

15083^53-1 is in LA, ETA tomorrow evening.

Chris

 chris2be8 2015-09-16 17:07

[QUOTE=chris2be8;410336] 15083^53-1 is in LA, ETA tomorrow evening.
[/QUOTE]

And finally: [code]
r1=58665682587756048182693098856878540829968306171362271526390398151999 (pp68)
r2=325841713507744686501658243305059695279940598324135598362708097427186132440269231820919138779803007515765391633284041459557805322811486084578867647159 (pp150)
[/code]
Chris

 RichD 2015-09-21 02:00

Releasing 16231^53-1 for SNFS on big iron.
I have done the following ECM.
6300 @ 43e6
1200 @ 11e7
Should be enough for 2/9 SNFS.

 chris2be8 2015-09-22 15:30

Reserving for ECM, then SNFS if necessary:
307009^37-1

Chris

 chris2be8 2015-09-25 15:41

1091482926139472107^13-1 is done: [code]
r1=23480003168522092647367980139128385423367035818106452681437 (pp59)
r2=600976327996064471820324020675696367730105108552994254512427232620810381 (pp72)
r3=202603918730244065451786038961212500910025698407546278752719672027973644443477983021633 (pp87)
[/code]
The script said it successfully added it to factordb, but I doubt you would be able to look it up.

Chris

 chris2be8 2015-09-28 15:47

307009^37-1 is ECMed to T50, so reserving another to ECM:
26021^47-1

And 590713^37-1 in LA. ETA tomorrow morning.

Chris

 chris2be8 2015-09-29 15:59

[QUOTE=chris2be8;411478] 590713^37-1 in LA. ETA tomorrow morning.
[/QUOTE]

And here it is: [code]
r1=4645611181271731998255170775259736168976058124266258362620770896617335449455887 (pp79)
r2=1266230898581662479660220112350017357085146461833110091865706346492062670188346744195112919373927218971445810289470741090422397403 (pp130)
[/code]
Chris

 chris2be8 2015-10-01 15:57

307009^37-1 is done: [code]
r1=527390040581079876127564550038581729105608386508907598122781451229530371049968900609110344472251383 (pp99)
r2=653595937698940566046215151817817298660126014780170741143106981040466434389055171543835079726296387 (pp99)
[/code]
And reserving another for ECM/SNFS:
26113^47-1

Chris

 wblipp 2015-10-02 13:53

Oscar aka Lorgix has factored the residual from [URL="http://factordb.com/index.php?id=1100000000012564709"]1367^79-1[/URL] as P55 * P178

 chris2be8 2015-10-04 15:38

[QUOTE=chris2be8;411758] Reserving another for ECM/SNFS:
26113^47-1
[/QUOTE]

That's nearly finished so reserving:
26249^47-1

Chris

 wblipp 2015-10-06 07:05

Oscar aka Lorgix has found a P49 of [URL="http://factordb.com/index.php?id=1100000000011122717"]1373^79-1[/URL]. The residual C188 has had a t50.

 chris2be8 2015-10-06 14:46

[QUOTE=chris2be8;411967]reserving:
26249^47-1

Chris[/QUOTE]

That's done: [code]
********** Factor found in step 2: 3887758297657396489463539003146701555017879530830959
Found probable prime factor of 52 digits: 3887758297657396489463539003146701555017879530830959
Probable prime cofactor 48922019994734234892309809918785067390529984876397096249775584218271653601400619701416138599059826891382351572588279466009879149901376344571537818517689 has 152 digits
[/code]
So reserving the next one:
26251^47-1

Chris

 wblipp 2015-10-06 22:56

Oscar aka Lorgix has factored [URL="http://factordb.com/index.php?id=1100000000378769458"]2833^71-1[/URL] and found a P52 from [URL="http://factordb.com/index.php?id=1100000000298223394"]2657^73-1[/URL]. The remaining c191 has had 1.5*t50.

 chris2be8 2015-10-08 15:42

I've nearly finished ECMing 26251^47-1 so I'll reserve another:
4027^61-1

Chris

 chris2be8 2015-10-09 16:44

26021^47-1 is done: [code]
prp95 factor: 46573725944370372190996262321984645282983039447624811684135167883868827531508329338210303520681
prp109 factor: 2733876622559343085628181474649519864332078379073976687324537274598037140381061300028172023178662556567236907
[/code]
Chris

 wblipp 2015-10-12 03:51

Oscar aka Lorgix factored the C218 of [URL="http://factordb.com/index.php?id=1100000000379200348"](2411^67-1)/2410[/URL] as p41*p48*p65*p66

 chris2be8 2015-10-12 15:42

I'm getting another system, which should enable me to take on larger numbers. So reserving:
16141^53-1

And reserving for ECM:
4351445705381793454127935831466282875990593963427813^5-1

Chris

 chris2be8 2015-10-16 15:21

4351445705381793454127935831466282875990593963427813^5-1 is done: [code]
********** Factor found in step 2: 10764711810952512147834409331575880643265051593499871
Found probable prime factor of 53 digits: 10764711810952512147834409331575880643265051593499871
Probable prime cofactor 33306720194657123625341367946117034607458292139883369381859292809752212488994631798325941368298095434502726083547116029727197417185214628903518573331202771 has 155 digits
[/code]
So I'll reserve another to keep the GPU busy:
22199431^29-1

Chris (busy assembling new system)

 chris2be8 2015-10-21 15:55

16141^53-1 is done: [code]
p81 factor: 129196749990794922021519860682282708580931800570468459701100304322242613257267011
p139 factor: 5025254589726447582067398256615579176534578960974487765135600711160181242150695241859560433204860978894631138987802236160264482761874008143
[/code]
I won't have finished ECMing 22199431^29-1 by the time 4027^61-1 is finished, so I'll reserve another one that RichD ECMed for SNFS:
16217^53-1

Chris

 chris2be8 2015-10-26 16:44

I've nearly finished ECMing 22199431^29-1 so I'll reserve another for ECM (and SNFS if necessary):
17761^53-1

Chris

 chris2be8 2015-10-28 18:05

16217^53-1 is done: [code]
p80 factor: 86772614119877518598521554735597213021089055346722044586104730227549550843099253
p139 factor: 9552366319330267184545546679466060233277293220097359222081989423189573348281813264571137466751907623771478827246777986497336881773415595057
[/code]
And 22199431^29-1 survived ECM so is now being sieved.

Chris

 chris2be8 2015-10-29 16:46

[QUOTE=chris2be8;413831]I've nearly finished ECMing 22199431^29-1 so I'll reserve another for ECM (and SNFS if necessary):
17761^53-1

Chris[/QUOTE]

That factored: [code]
********** Factor found in step 2: 105712099946023601317435435761612562734762890406881443
Found probable prime factor of 54 digits: 105712099946023601317435435761612562734762890406881443
Probable prime cofactor 887575477820895463717193816375796224704492277839834161323259469158770965330657874072970634431461421183066730864448442558622337904211585187766807295314918691930236183431 has 168 digits
[/code]
So reserving another for ECM (and SNFS if necessary):
17041^53-1

Chris

 wblipp 2015-10-30 13:56

Oscar aka Lorgix found a factor of [URL="http://factordb.com/index.php?id=1100000000378750542"]3541^67-1[/URL] with ECM then finished it with GNFS

 chris2be8 2015-11-02 16:53

I won't have finished ECMing 17041^53-1 before 22199431^29-1 starts LA so I'll reserve the last one RichD ECMed for SNFS:
16231^53-1

Chris

 chris2be8 2015-11-04 16:56

22199431^29-1 is done: [code]
Wed Nov 4 08:06:51 2015 p71 factor: 24108175926703930592719372312486686211332973181273488686889753207576817
Wed Nov 4 08:06:51 2015 p136 factor: 2067317939925575039903922821387526945931977782056000068910462701883585412232894091181141831120724639633327671585823476791259173732130977
[/code]
NB. The latest msieve says pnn instead of prpnn which confused my version of factMsieve.pl (it searched for prp and didn't find it). I think I've fixed it, I'll know for sure when the next number is done.

Chris

 chris2be8 2015-11-07 16:33

I've nearly finished ECMing 17041^53-1 so I'll reserve another for ECM:
1237^71-1

Chris

 chris2be8 2015-11-11 18:07

16231^53-1 is done: [code]
p73 factor: 1835489403752257826335305231062300722751288914287339549029854984350235181
p147 factor: 472312369158180099749238582722641485190720099773517410597742148875031308918273466680891727557175353901530312368287153968469885171377714324863696853
[/code]
Chris

 chris2be8 2015-11-13 22:35

1237^71-1 is done: [code]
********** Factor found in step 2: 1316830732558187278200529271776496710622227711387
Found prime factor of 49 digits: 1316830732558187278200529271776496710622227711387
Prime cofactor 7522009303601711986497193708777787665069134629711949647654768074861164638093335162152596309508770483085643106388442258810089 9904690883760595916485248306445921490593 has 164 digits
[/code]
Which makes my new GPU seem worth the trouble of setting it up.

So I'll reserve another to ECM:
26849^47-1

Chris

 chris2be8 2015-11-16 17:32

I've finished ECMing 26849^47-1 (it's now queued for SNFS) so I'll reserve another:
26861^47-1

Chris

 RichD 2015-11-20 09:53

Can this be improved upon?

[QUOTE=RichD;410123]I'm also starting some ECM work on:
1327736012762191^17-1[/QUOTE]

I’ve completed ECM for (1327736012762191^17-1)/(1327736012762191-1) to 2/9 of the C242. This appears to be large enough that degree halving should have some benefits.

The traditional sextic (which is a much larger polynomial) sieves poorly.
Don’t even consider a quartic for this size number. (pitiful sieving)
Both of these would need more ECM work.

So now we have the following octic polynomial:
[CODE]n: 93279832932678885982491327274510953769646671804250585173949381396533884838015343380578179958902524702743577609136955094165823424785868918382341305541015034575413635998174157065849573034448811318011391066252444362245200432150814809755443305857
skew: 1
c8: 1
c7: 1
c6: -7
c5: -6
c4: 15
c3: 10
c2: -10
c1: -4
c0: 1
Y1: 1327736012762191
Y0: -1762882919585641022025519120482[/CODE]

It turns out it sieves better on the algebraic side but the yield is nowhere near the desired 2.0 (actually 0.4). I’ve tried the 15e siever but the best performing parameters are what would be expected for a quintic SNFS-242 with 14e.

With the poor yield, special-q would have to go deep to get enough relations. Without looking into this in much detail I wonder if, say, 3/4 of the relations would be gathered using the -a switch and the remainder with -r, then combine.

Is there something better to look into or is it just the nature of this beast?

 henryzz 2015-11-20 12:16

You could try 3 large primes on the algebraic side.
Are you saying this would normally be 14e but you have tried 15e? If the 0.4 was for 15e I would try 16e.

 RichD 2015-11-20 12:44

[QUOTE=henryzz;416701]You could try 3 large primes on the algebraic side.
Are you saying this would normally be 14e but you have tried 15e? If the 0.4 was for 15e I would try 16e.[/QUOTE]

I'm not that familiar with 3LP but can experiment.

It seems this would be a 14e candidate except the yield is poor, i.e., 0.4.
15e gave higher times and lower yields.

 henryzz 2015-11-20 12:56

[QUOTE=RichD;416703]I'm not that familiar with 3LP but can experiment.

It seems this would be a 14e candidate except the yield is poor, i.e., 0.4.
15e gave higher times and lower yields.[/QUOTE]

Lower yields? Do you mean lower rels/sec or sec/rel? You want lower sec/rel.

 chris2be8 2015-11-20 17:05

What large prime bounds, max factor residue bits and lambda did you use? (Just posting the job files you used for test sieving would tell us this.)

It's algebraic difficulty is a lot bigger than it's rational difficulty, so larger bounds on the algebraic side might work better.

Although 15e may produce fewer relations per second it should have a higher yield per Q so fewer duplicate relations. So it could take less time to produce enough relations to build a matrix.

Chris

 chris2be8 2015-11-20 17:09

17041^53-1 is done: [code]
p94 factor: 3662307602210228535619835779914311370477801234529957729487652126859608483570639687220509696931
p127 factor: 2978616855942897608417116245288905327051816298548174515201094755963010436999669514832836424157718292681957277604324193037052583
[/code]

So I'll reserve another for ECM/SNFS.
1471^67-1

Chris

 chris2be8 2015-11-22 16:43

26849^47-1 is done: [code]
p57 factor: 999660313825904360401355162771337523337586013387325514733
p60 factor: 853149253996464445475030304738838786842326972634088225548103
p87 factor: 630713307565407705793970692222257962738620680662113759812657296084722623319040114863549 [/code]
And reserving:
151068118561^17-1

Chris

 chris2be8 2015-11-23 17:14

26861^47-1 is done: [code]
p77 factor: 70975956485207153809333371066022759565793263009071665197763974875666138697927
p83 factor: 31058908579752037328547553481801909295077667003355286452726560287323742147068742617
[/code]
And reserving:
27337^47-1

Chris

 chris2be8 2015-11-24 17:01

I've nearly finished ECMing 27337^47-1, so I'll reserve another:
5955331^31-1

Chris

 chris2be8 2015-11-25 08:46

5955331^31-1 fell to ECM: [code]
********** Factor found in step 2: 7151913311660233796802038283152839
Found probable prime factor of 34 digits: 7151913311660233796802038283152839
Probable prime cofactor 24703300106771850845980461390116865459438097256674804546778873140660011767895701749003775568249666792510633828101219978996900038522626079821288736554074209946443403757379 has 170 digits
[/code]
So reserving another:
3531757^31-1

Chris

 chris2be8 2015-11-27 17:08

That survived ECM so reserving:
27583^47-1

Chris

Edit. 27583^47-1 didn't take long: [code]
********** Factor found in step 1: 645917520539153211465654299246621
Found prime factor of 33 digits: 645917520539153211465654299246621
Prime cofactor 2879702701861158971380948559265444956925950741230151272761407053708132267001036014910576158157477225003341969456218898949214512249616664827453099414780150133615568499097333 has 172 digits
[/code]
So reserving:
363297061^23-1

 chris2be8 2015-11-29 17:07

363297061^23-1 survived ECM and is queued for SNFS. Reserving another to ECM:
10203065951356683356407^11-1

Chris

 chris2be8 2015-11-30 16:51

27337^47-1 is done: [code]
p55 factor: 1714266527816327430011293343475978113408266024454761721
p104 factor: 11462573904252342559793012058077839427439537572019831557685862400232557164112124475553216745325877634317
[/code]
So reserving another to keep the GPU busy:
297903607^23-1

Chris

 chris2be8 2015-12-01 18:13

3531757^31-1 is done: [code]
p68 factor: 35263366504318792615978473676149331876678692224496692109425414804041
p92 factor: 12919201583897614400726598902298494438505852777316454049892271477936351076173925021138154009
[/code]
Chris

 chris2be8 2015-12-03 17:33

363297061^23-1 is done: [code]
p66 factor: 134115964198974765864915673380383659207846045091205208981142760071
p124 factor: 1578632299684747782275569329338634058210743515127849360039219990643090689414782491332949881070776603008824349057307841721293
[/code]
And reserving:
3112976920905134054227^11-1

Chris

 chris2be8 2015-12-05 17:11

10203065951356683356407^11-1 is done: [code]
p69 factor: 354350365168715129968421516376450962985869604618274122079603583311841
p97 factor: 1806724652116403934907565980245735237027168687998145605101503937061234501961023504012797549842749
[/code]
And reserving:
37649^47-1

Chris

 chris2be8 2015-12-05 18:25

37649^47-1 didn't last long: [code]
********** Factor found in step 1: 197567170653802788793852912024500731
Found prime factor of 36 digits: 197567170653802788793852912024500731
Prime cofactor 41092847901226219316896746112799656729004889358091512642577837011556662518164698609099129028591792039157942471996004834097467498555007985540788232604392636204722771654221 has 170 digits
[/code]
So reserving:
1109^73-1

Chris

 chris2be8 2015-12-07 16:33

297903607^23-1 is done: [code]
p65 factor: 19012841319620864545005634542548502484236911211444252873098312833
p102 factor: 265865615067259518535965722217114685676675904205548769569425618439431234479485683584688518668345431539
[/code]
And reserving:
65392992865219129376914352910546911747^7-1

I think I've a big enough buffer now that reserving another number each time I complete one will be OK unless I get a run of numbers finding factors near the end of ECM processing.

Chris

 chris2be8 2015-12-10 17:30

3112976920905134054227^11-1 is done: [code]
p65 factor: 41967431574547006520918373387497292697050699313471281777768241849
p149 factor: 88535772716122724947289047805215143753814204792492676751831696110458834344472177405078505268814075484180948457040292890950564626659715685971175674611
[/code]
And reserving:
28289^47-1

Chris

 chris2be8 2015-12-11 17:00

28289^47-1 didn't take long: [code]
********** Factor found in step 2: 196088618157839510346448628084773322327497
Found prime factor of 42 digits: 196088618157839510346448628084773322327497
Composite cofactor 30336981515005603047791262955813363727406649193166677568165156992743183694365349321119786120531092963604508072051418547803283299243580739330317990003193662947850423 has 164 digits

and a bit later:
********** Factor found in step 1: 167719167846770423821004124230559646417362070471
Found prime factor of 48 digits: 167719167846770423821004124230559646417362070471
Prime cofactor 180879632927356952669014646665941630891382986377559180373184294829552131193506880133118518489867796071866844071783313 has 117 digits
[/code]
Is finding a 48 digit factor in stage 1 with B1=11e6 noteworthy?

And reserving:
890011^37-1

Chris

 lorgix 2015-12-12 16:10

[QUOTE=chris2be8;418941]Is finding a 48 digit factor in stage 1 with B1=11e6 noteworthy?

Chris[/QUOTE]
It's uncommon, but not [I]that[/I] uncommon.

 chris2be8 2015-12-14 16:42

1109^73-1 is done: [code]
p76 factor: 5585153889138506559307329028267559478392536759520772669686986384231593171917
p114 factor: 297675906197969757728707477652319148927445155475852918439924377893682571458875091844375241265503198978446962121877 [/code]
So reserving:
17333^53-1

Chris

 chris2be8 2015-12-19 16:36

65392992865219129376914352910546911747^7-1 is done: [code]
p51 factor: 288967745218887281052649140183551233096827535172867
p138 factor: 597885843797941098547415318318115723241318442074399404384411566743384265063353923592002735526660909553054232025000787159506344894872212777
[/code]
And reserving:
17431^53-1

Chris

 chris2be8 2015-12-24 11:04

890011^37-1 is done [code]
p86 factor: 47606779532409630012036013931393409096810053363701130453624153958006499801505418978643
p129 factor: 316639549517084667428758489480787511177287839389473443040255154617749265271692548803607131842526397943253969038908218241903731379
[/code]
And reserving:
17977^53-1

Chris

 chris2be8 2015-12-31 16:56

17333^53-1 is done: [code]
p62 factor: 38115206066574625986772137001425712473284603641256294448800261
p108 factor: 493815534664817280824776453862783671396334074003211254672963575777565175432375819161138093615286104204777543
[/code]
And reserving:
18133^53-1

Chris

 chris2be8 2016-01-05 17:07

17431^53-1 is done: [code]
p59 factor: 19415737683350244055507845970519493388469024675389825123211
p72 factor: 482901909196172324798371798124660207545512204242179999585797797870913557
p91 factor: 3773738892530026902168173188825440968429071450533872890729844259037239088767486076349746759
[/code]
And reserving:
54751^47-1

Chris

 chris2be8 2016-01-09 06:28

54751^47-1 is done: [code]
********** Factor found in step 2: 2069906872605429499809386354892844494777010447
Found prime factor of 46 digits: 2069906872605429499809386354892844494777010447
Prime cofactor 44677790841773582268705528514897435814389852883554831603862259331303748852908595049061220820938713030205990612693396857922599200037152627478721675512207108528095675121953551 has 173 digits
[/code]
So reserving:
13212967^31-1

Chris

 chris2be8 2016-01-16 16:54

17977^53-1 is done: [code]
p92 factor: 24352100770812365725320669765440067632727077272761583999117638603720119031544455261153967417
p130 factor: 7224088949816007528079975209681186786058984302985931694609375066778873999802265168620094259257024281356813690786405342238827562573
[/code]
And reserving:
779386807^23-1

Chris

 chris2be8 2016-01-22 16:57

13212967^31-1 is done: [code]
Fri Jan 22 15:41:48 2016 p59 factor: 15300924616396139600777388041584776256444618362907710125617
Fri Jan 22 15:41:48 2016 p71 factor: 31547072176543589776808494102596317196490348995461658249839032690257113
Fri Jan 22 15:41:48 2016 p85 factor: 8837589144991720686287837101155825164320035750609972259693938361529923166820780221537
[/code]
And reserving two slightly smaller numbers:
28541^47-1
28663^47-1

Chris

 RichD 2016-01-26 16:24

Taking 3349427^37-1 for ECM only.

 chris2be8 2016-01-30 16:46

18133^53-1 is done: [code]
p60 factor: 125636357009320380489894650454621465008127705998925613522387
p163 factor: 2194476916129889913896314929818646953213834864445707399025978868795909299525940727251472100599607026107565551524639071828366766828783636425038641494602302664394543
[/code]
And reserving two more easier ones:
28901^47-1
7339991^29-1

Chris

 chris2be8 2016-02-01 16:46

7339991^29-1 factored by ECM: [code]
********** Factor found in step 2: 562209394093801698815374674343776229023561548569
Found prime factor of 48 digits: 562209394093801698815374674343776229023561548569
Prime cofactor 3087285039211886131894162051049892983801203004908153331890298605393249306204797704729852969769563164553555050564696916614488776588863448659402201 has 145 digits
[/code]
So reserving as a replacement:
29131^47-1

Chris

 wblipp 2016-02-03 05:04

Ryan Propper has factored by ECM, from the [URL="http://www.lirmm.fr/~ochem/opn/mwrb2000.txt"]most wanted list[/URL],

[URL="http://factordb.com/index.php?id=1100000000507714177"]14549^59-1[/URL] P46 * P197
[URL="http://factordb.com/index.php?id=1100000000507714287"]15017^59-1[/URL] P44 * P199

 chris2be8 2016-02-03 16:54

779386807^23-1 is done: [code]
p95 factor: 76611737447388849633373772861572993890567784611129882859469574149501336501031793306923766969423
p101 factor: 54234019103305556953366994426506439539135448483628123091307785280489439642584171530710669561126860759
[/code]
And reserving:
29327^47-1

Chris

 wblipp 2016-02-06 15:59

[URL="http://factordb.com/index.php?id=1100000000509372111"]P118^3-1[/URL] = P45 * P191

where P118 is the larger factor of [URL="http://factordb.com/index.php?id=1100000000007804835"]37^97-1[/URL]

 chris2be8 2016-02-06 17:17

28541^47-1 is done: [code]
p94 factor: 1612434472032983656459065103167762842868355124348913563692827517383977034886985416303220821811
p112 factor: 5547734620315930242740894128705774820741614671978648864270811608570404997815910630646429815277000297611251925017
[/code]
And reserving:
29633^47-1

Chris

 wblipp 2016-02-07 05:43

By Ryan Propper

[URL="http://factordb.com/index.php?id=1100000000529393598"]28210267^31-1[/URL] P110 * P115
[URL="http://factordb.com/index.php?id=1100000000464500643"]118801^47-1[/URL] P58 * P67 * P110
[URL="http://factordb.com/index.php?id=1100000000422784246"]10271^59-1[/URL] P60 * P174
[URL="http://factordb.com/index.php?id=1100000000464466223"]10651^59-1[/URL] P45 * P87 * P103
[URL="http://factordb.com/index.php?id=1100000000507713671"]10987^59-1[/URL] P76 * P159
[URL="http://factordb.com/index.php?id=1100000000507713676"]11003^59-1[/URL] P84 * P152
[URL="http://factordb.com/index.php?id=1100000000507713688"]11117^59-1[/URL] P51 * P184

All times are UTC. The time now is 13:50.